Problem of the Week #4
10/5/2020 to 10/18/2020

The sequence of integers \(u_0, u_1, u_2, u_3, \ldots \) satisfies \(u_0 = 1 \) and

\[u_{n+1}u_{n-1} = ku_n \quad \text{for each} \quad n \geq 1, \]

where \(k \) is some fixed positive integer. If \(u_{2000} = 2000 \), determine all possible values of \(k \).

Solution: The possible values of \(k \) are 2000, 1000, 500, 400, 200, and 100.

Rewrite the recursion so that \(u_{n+1} = \frac{ku_n}{u_{n-1}} \) and then begin by finding the first few terms of the sequence. To do this, we must first pick an integer value of \(u_1 \), say \(x \).

\[
\begin{align*}
 u_0 &= 1 \\
 u_1 &= x \\
 u_2 &= kx \\
 u_3 &= k^2 \\
 u_4 &= \frac{k^2}{x} \\
 u_5 &= \frac{k}{x} \\
 u_6 &= 1 = u_0 \\
 u_7 &= x = u_1
\end{align*}
\]

Since this sequence repeats every six terms and \(2000 \equiv 2 \text{ mod } 6 \), we know that \(u_{2000} = u_2 \). Thus, we need \(u_2 = kx = 2000 \). Now, \(k \) and \(x \) are integers, and \(2000 = 2^4 \cdot 5^3 \), so \(k \) and \(x \) are both of the form \(2^a \cdot 5^b \). However, \(u_5 = \frac{k}{x} \) must also be an integer. The only such pairs \((k, x)\) satisfying all of these conditions are

\[(2000, 1), (1000, 2), (500, 4), (400, 5), (200, 10), \text{ and } (100, 20).\]

Thus, the possible values of \(k \) are 2000, 1000, 500, 400, 200, and 100.
Solutions for this problem were submitted by Phil Boyd (Manchester, England), Matthew A. Brom (Troy, NY), Quentin Funk (TU alum), T.J. Gaffney (Las Vegas, NV), Ben Gustafson (TU), Rob Hill (Gambrills, Maryland), Hari Kishan (India), Lukas Klawuhn (Germany), Tengiz Kutchava (Georgia, the country), Yann Michel (Paris, France), Benjamin Phillabaum (Bothell, WA), Luciano Santos (Portugal), Matthias Schulte (Germany), and François Seguin (Amiens, France).