Some five distinct integers form an arithmetic progression. Is it possible that their product equals x^{2021} for some positive integer x?

Solution: It is possible.

Consider the arithmetic progression $a, 2a, 3a, 4a, 5a$. The product of these numbers is $120a^5$. We see that $5n+1 = 2021$ when $n = 404$, giving that if $a = 120^{404}$, then arithmetic progression $120^{404}, 2\cdot120^{404}, 3\cdot120^{404}, 4\cdot120^{404}, 5\cdot120^{404}$ has a product of

$$\left(120^{404}\right)(2 \cdot 120^{404})(3 \cdot 120^{404})(4 \cdot 120^{404})(5 \cdot 120^{404}) = 120^{2021},$$

as desired.

Solutions for this problem were submitted by Evan Fu (Beaverton, OR), Rob Hill (Gambrills, MD), Hari Kishan (India), Tengiz Kutchava (Georgia, the country), Yann Michel (Paris, France), Benjamin Phillabaum (Lafayette, IN), Luciano Santos (Portugal), François Seguin (Amiens, France), and Zurab Zakaradze (Georgia, the country).