Problem of the Week #8
12/5/2022 to 12/18/2022

For positive integers \(n \), let the numbers \(c(n) \) be determined by the rules \(c(1) = 1 \), \(c(2n) = c(n) \), and \(c(2n + 1) = (-1)^n c(n) \). Find the value of

\[
\sum_{n=1}^{2022} c(n)c(n + 2).
\]

Solution: The sum has a value of -2.

Note that

\[
c(2k + 1)c(2k + 3) = (-1)^k c(k)(-1)^{k+1} c(k + 1) = -c(k)c(k + 1) = -c(2k)c(2k + 2).
\]

It follows that

\[
\sum_{n=1}^{2022} c(n)c(n + 2) = c(1)c(3) + c(2022)c(2024) + \sum_{k=1}^{1010} (c(2k)c(2k + 2) + c(2k + 1)c(2k + 3))
\]

\[
= c(1)c(3) + c(2022)c(2024).
\]

Applying the given rules, \(c(3) = (-1)^1 c(1) = -1 \), so that \(c(1)c(3) = -1 \). We can similarly reduce \(c(2022)c(2024) \) to obtain its value of -1. Thus, the sum’s value is

\[
c(1)c(3) + c(2022)c(2024) = (-1) + (-1) = -2.
\]

Note: This is (a slightly modified version of) Problem B1 from the 2013 Putnam Exam. The 2022 Putnam exam took place on Saturday, December 3rd, and I like to honor each year’s exam with a problem from a previous exam.
Solutions for this problem were submitted by Ziad Aramouni (Lebanon), Ritwik Chaudhuri (India), Evan Fu (Beaverton, OR), Amelia Gibbs (TU), Ong See Hai (Singapore), Rob Hill (Gambrills, MD), Kipp Johnson (Beaverton, OR), Hari Kishan (India), Tengiz Kutchava (Georgia, the country), Tin Lam (St. Louis, MO), Surajit Rajagopal (India), François Seguin (Amiens, France), and Zurab Zakaradze (Georgia, the country).