Summer Problem of 2023

$$
5 / 8 / 2023 \text { to } 8 / 27 / 2023
$$

Define $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$, and for any subset K of \mathbb{N}_{0}, define the function $f_{K}(n)$ to be the number of ways to write $n=k_{1}+k_{2}$ where $k_{1}, k_{2} \in K$ and $k_{1}<k_{2}$. For example, if $K=\{1,2,3,5,8,13\}$, then $f_{K}(1)=0$, while $f_{K}(8)=1$, as $8=3+5$. Find, with justification, a way to partition \mathbb{N}_{0} into two sets, A and B, such that $f_{A}(n)=f_{B}(n)$ for every positive integer n, or prove that no such partition exists.

Solution: It is possible to find such an A and B !
To convince ourselves that a partition exists, let's place 0 into A (since 0 must go somewhere). Then, 1 must go into B, or else, $f_{A}(1)=1 \neq 0=f_{B}(1)$. Going integer-by-integer, we would soon see that it appears we have

$$
A=\{0,3,5,6,9,10 \ldots\} \text { and } B=\{1,2,4,7,8, \ldots\}
$$

but it is neither clear (nor justified) that this is going to work forever, nor do we know that such a partition, if it does exist, is unique. Furthermore, it's not even clear what rule, if any, would place some integer m into A or B.

So, let's assume that a partition does exist, and define the following two generating functions:

$$
\mathcal{A}(x)=\sum_{a \in A} x^{a} \text { and } \mathcal{B}(x)=\sum_{b \in B} x^{b} .
$$

Since A, B partition \mathbb{N}_{0},

$$
\begin{equation*}
\mathcal{A}(x)+\mathcal{B}(x)=\sum_{n \in \mathbb{N}_{0}} x^{n}=\frac{1}{1-x} . \tag{1}
\end{equation*}
$$

Next, notice that

$$
\mathcal{A}^{2}(x)=\left(\sum_{a \in A} x^{a}\right)^{2}=\sum_{\substack{a_{1}, a_{2} \in A \\ a_{1} \leq a_{2}}} x^{a_{1}+a_{2}},
$$

while

$$
\mathcal{A}\left(x^{2}\right)=\sum_{a \in A}\left(x^{2}\right)^{a}=\sum_{a \in A} x^{2 a} .
$$

Combining these last two equations gives

$$
\mathcal{A}^{2}(x)-\mathcal{A}\left(x^{2}\right)=\sum_{\substack{a_{1}, a_{2} \in A \\ a_{1}<a_{2}}} x^{a_{1}+a_{2}}
$$

so that the only powers of x we will see in $\mathcal{A}^{2}(x)-\mathcal{A}\left(x^{2}\right)$ are those that can be obtained by adding two distinct elements from A. Moreover, every pair of distinct elements from A that add up to some $n \in \mathbb{N}_{0}$ will contribute to the coefficient of x^{n}, that is,

$$
\mathcal{A}^{2}(x)-\mathcal{A}\left(x^{2}\right)=\sum_{n \in \mathbb{N}_{0}} f_{A}(n) x^{n}
$$

Applying the same logic to $\mathcal{B}(x)$, the problem statement gives us that

$$
\begin{aligned}
\mathcal{A}^{2}(x)-\mathcal{A}\left(x^{2}\right)=\mathcal{B}^{2}(x)-\mathcal{B}\left(x^{2}\right) & \Rightarrow \mathcal{A}^{2}(x)-\mathcal{B}^{2}(x)=\mathcal{A}\left(x^{2}\right)-\mathcal{B}\left(x^{2}\right) \\
& \Rightarrow(\mathcal{A}(x)-\mathcal{B}(x))(\mathcal{A}(x)+\mathcal{B}(x))=\mathcal{A}\left(x^{2}\right)-\mathcal{B}\left(x^{2}\right) \\
& \Rightarrow \frac{(\mathcal{A}(x)-\mathcal{B}(x))}{1-x}=\mathcal{A}\left(x^{2}\right)-\mathcal{B}\left(x^{2}\right), \text { by }(1) \\
& \Rightarrow \mathcal{A}(x)-\mathcal{B}(x)=(1-x)\left(\mathcal{A}\left(x^{2}\right)-\mathcal{B}\left(x^{2}\right)\right) .
\end{aligned}
$$

Repeatedly applying this last equality to the right hand side gives us the following:

$$
\mathcal{A}(x)-\mathcal{B}(x)=\left(\mathcal{A}\left(x^{2^{k}}\right)-\mathcal{B}\left(x^{2^{k}}\right)\right) \cdot \prod_{i=0}^{k-1}\left(1-x^{2^{i}}\right)
$$

Since $0 \in A$, the first term of $\mathcal{A}\left(x^{2^{i}}\right)$ is 1 , whereas there is no constant term in $\mathcal{B}\left(x^{2^{i}}\right)$, giving that

$$
\mathcal{A}(x)-\mathcal{B}(x)=\lim _{k \rightarrow \infty}\left[\left(\mathcal{A}\left(x^{2^{k}}\right)-\mathcal{B}\left(x^{2^{k}}\right)\right) \cdot \prod_{i=0}^{k-1}\left(1-x^{2^{i}}\right)\right]=\prod_{i=0}^{\infty}\left(1-x^{2^{i}}\right) .
$$

This product, when multiplied out, gives a positive coefficient in front of x^{j} whenever j is the sum of an even number of distinct powers of 2 ; similarly, we'll get a negative coefficient in front of x^{j} whenever j is the sum of an odd number of distinct powers of 2 . Thus, A is the set of all elements of \mathbb{N}_{0} with an even number of 1's in their binary representation, and B is the set of all elements of \mathbb{N}_{0} with an odd number of 1 's in their binary representation.

Solutions for the summer problem were submitted by Rob Hill (Gambrills, MD), Tengiz Kutchava (Georgia, the country), François Seguin (Amiens, France), and Zurab Zakaradze (Georgia, the country).

