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Abstract

Multiple models are discussed for ranking teams in a league and introduce a new model
called the Oracle method. This is a Markovovian method that can be customized to in-
corporate multiple team traits into its ranking. Using a foresight prediction of NFL game
outcomes for the 2002–2013 seasons, it is shown that the Oracle method correctly picked
64.1% of the games under consideration, which is higher than any of the methods com-
pared, including ESPN Power Rankings, Massey, Colley, and PageRank.
Keywords: NFL, rankings, Massey, PageRank, Oracle method

1 Introduction

Former NFL Head Coach Bill Parcells authored the well-known quote, “You are what your
record says you are.” While this may be true for leagues deciding which teams will move into
the playoffs from a regular season, it may not be the case that the win-loss record is the sole
indicator of which team is more likely to win a head-to-head matchup. For example, suppose
we compare Team A that has a final regular season record of 8 wins and 8 losses against Team
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B that has a final regular season record of 6 wins and 10 losses, where Team A has never played
Team B. If we were to see that the bulk of Team A’s victories come against teams with seven
or fewer wins while many of Team B’s victories are against teams with eight or more wins,
then that makes it seem more likely that Team B could beat Team A in a head-to-head contest.
Moreover, head-to-head competition is not enough to give us information on which teams are
better than one another. As an example, we could have a 3-team league, say comprised of Teams
C, D, and E, where every team plays every other team once, and the outcomes are Team C beats
Team D, Team D beats Team E, and Team E beats Team C.

Consider a tournament with n teams, T1, . . . ,Tn, playing K rounds of games, R1, . . . ,RK . We
letMn×n denote the set of n×n real matrices and let (ai j)∈Mn×n be the matrix with ai j as the
i, j-th entry. For each round played in this tournament, we create a matrix whose i, j-th entry
is the number of times that Ti has defeated Tj and in the case of a tie between Ti and Tj, we
define that each team is awarded 0.5 wins for that match. In a round-robin tournament with
no ties allowed, this entry is either 0 or 1. Define for any round, Rm, the matrix Am to be the
sum of these matrices, that is, Am is the matrix whose i, j-th entry is the number of times Ti

has defeated Tj in the first m rounds of the tournament. In addition, this gives the sum of the
entries of the i-th row to be the total number of wins accumulated by Ti in rounds 1,2, . . . ,m
and the sum of the entries of the i-th column to be the total number of losses accumulated by Ti

in rounds 1,2, . . . ,m. With each matrix Am there is a canonical associated network, denoted by
Nm, see Horn and Johnson (1990), with nodes 1,2, . . . ,n such that there is a directed edge from
j to i for every instance in which Ti beats Tj. We will say that this network is strongly connected
if, given any two nodes u and v, there is both a directed path from u to v and a directed path
from v to u. In the case where Nm is strongly connected, then it will also be the case that Am is
irreducible, which is a condition that we need in order to employ the new application proposed
in this paper.

Given T1, . . . ,Tn, a rating vector r = [r1 r2 · · · rn]
T ∈ Rn is constructed via some predeter-

mined method, where ri represents the strength of Ti. We then use r to form a ranking of these
teams, that is, whenever ri > r j we say that Ti is ranked higher than Tj. Given a tournament, we
wish to rank the nodes of the network corresponding to a given round, say Rm. We then use this
ranking to predict the outcomes of games to be played in the next round, Rm+1. More precisely,
if Ti is set to play Tj in Rm+1 and node i is ranked above node j in Nm, then we predict that Ti

will beat Tj in Rm+1. In the case where Ti and Tj have the same rank, we cannot necessarily
predict which team is more likely to win. However, in the application of the methods in this
paper, namely, predicting the outcomes of NFL games, we predict that the home team will win
when identical rankings occur .

There are many well-known methods for creating a ranking system for a given tournament.
Some use simple data or human judgement, such as the Issacson-Tarbell Postulate by Easter-
brook (2008) or the Experts Pick method, where we use the Power Rankings given by ESPN
(2014). Some methods consider the analysis of data from paired comparisons experiments,
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where one estimates the probability that a team may defeat another. For instance, this is the
case in the models given by Bradley and Terry (1952) and Thurstone (1927). Methods for paired
comparisons are still very influential, and we refer the reader to Agresti (2002), David (1963),
and Hunter (2004) for details and other applications. Other methods, such as the Massey (1997)
and Colley (2002) methods, use elementary ideas from Linear Algebra to solve, or find a best-fit
solution to, a linear system Ar = b to produce a rating vector. Here the matrix A contains infor-
mation about the number of games played between two teams in the tournament and the vector
b encodes a variation on the win-loss differential or the cumulative point differential for each
team in the tournament. There are also other ranking methods that use the Perron-Frobenius
Theorem to find the steady-state solutions of a Markov process, such as Keener (1993) and
Google’s PageRank algorithm by Brin and Page (1998). We refer the reader to the recent book
of Langville and Meyer (2012) for a greater perspective on several other ranking methods as
well as further details on the methods listed in this paper.

In this article, we focus on the ranking problem in the sports setting and introduce a new
ranking method, called the Oracle method. This method is a customizable ranking algorithm
that is influenced by the PageRank method. Recent efforts to optimize the PageRank algorithm,
such as the work of Gleich (2011), have yielded important improvements in performance and
customization geared toward the Web page ranking industry. In this work with sports rankings,
we will see that the Oracle method has the ability to include various traits when compiling a
ranking of teams, such as the strength of a team’s schedule, the margin of victory, and number
of wins.

We organize this paper as follows. In Section 2 we discuss the general notion of rating and
ranking teams in a league, and we discuss a few of the more popular methods employed for
compiling such rankings. In Section 3 we discuss the Oracle method for ranking teams, and in
Section 4, we measure how this new ranking method compares to other well-known methods,
using as a barometer of accuracy the foresight prediction outcomes of NFL games in the Super
Bowl era. In Section 5 we give a discussion of the results from the previous sections, along
with some strengths and weaknesses pertaining to this application of the Oracle model. Finally,
in Section 6, some concrete examples of how to implement the Oracle model are laid out, and
additional tables of data are given.

2 Ranking Methods

In this section we provide a more detailed description of some previously-known ranking meth-
ods.
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2.1 The Win-Home Method

In an ESPN.com Tuesday Morning Quarterback article by Easterbrook (2008), he cites a reader
proposed method for choosing the winner of NFL games which he calls the Issacson-Tarbell
Postulate, and which we call the Win-Home (WH) ranking. Wishing to find the simplest way to
predict NFL game outcomes while still getting good results, this method fits the bill, where if
Ti and Tj are scheduled to play in Rm+1, we predict that Ti will beat Tj if

(i) Ti has more wins than Tj in the first m rounds, or

(ii) Ti and Tj have the exact number of wins in the first m rounds, but Ti is the home team.

In Section 4, we will use this ranking system as a baseline for comparing all ranking systems in
terms of correctly picking the outcomes of games between Weeks 4 (and 11) and the penultimate
week of the 1966–2013 NFL seasons.

2.2 The Experts Pick Method

In this method, an expert (or group of experts) ranks the teams of a league. This is the type of
ranking we see on ESPN (2014), and typically, it does not deviate far from the rankings one gets
when using the WH method given above. That said, this is the one method we give that allows
for humans to make predictions using any information available, including data that cannot be
incorporated into any of the other models presented in this article (for example, if the starting
quarterback for a team gets injured).

2.3 Massey and Colley Methods

Some methods for establishing a ranking require solving, or finding a best-fit solution to, the
linear system Ar = b. Here, based on some set of predetermined conditions, A and b are
formed using the results from the tournament, and the n×1 vector r corresponds to a rating of
the teams T1, . . . ,Tn. The two predominant methods in this area are those of Massey (1997)1,
which accounts for the scores of tournament games, and Colley (2002), which does not.

Massey’s method finds the least squares solution, r, to the system Mr = y, where M =

(Mi j) ∈Mn×n and y = (yi) ∈Mn×1 are constructed in the following manner:

(i) The entry Mii is the number of games played by Ti for each 1 ≤ i ≤ n− 1, Mi j is the
negative of the number of games played between Ti and Tj for i 6= j and 1 ≤ i ≤ n− 1,
and Mn j = 1 for every j.

1The method of Massey used for the BCS Rankings in college football is proprietary, and thus not publicly
available. The method we discuss is the original idea of Massey (1997), which he developed for an honors thesis
as an undergraduate at Bluefield College.
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(ii) The coordinate yi is the total number of points scored against Ti subtracted from the total
number of points scored by Ti for 1≤ i≤ n−1 and yn = 0.

We then let the i-th coordinate of the least squares solution r be the rating of Ti. In Massey’s
method, the solution r has the property that ri−r j is the expected score differential of the match
between Ti and Tj.

Colley’s method finds the exact solution to the system Cr = t, where C = (Ci j) ∈Mn×n and
t = (ti) ∈Mn×1 are constructed in the following manner:

(i) The entry Cii is two plus the number of games played by Ti for each i, and Ci j is the
negative of the number of games played between Ti and Tj for i 6= j.

(ii) The coordinate ti is given by ti = 1+ 1
2(wi−`i), where wi is the number of wins by Ti and

`i is the number of losses by Ti.

We then let the i-th coordinate of the exact solution r be the rating of Ti. Here, scores of
tournament games are not accounted for, but rather, Colley’s idea is that a team should receive
more credit for defeating a stronger opponent than for defeating a weaker opponent, regardless
of the score of the contest.

2.4 Bradley-Terry Model

An alternate approach to view a ranking system is to use the ratings of the teams to determine the
probability that one team will defeat another. This is the basic assumption of the pair preference
model by Bradley and Terry (1952). More precisely, Bradley and Terry produce a rating vector,
r, and then they define

πi j =
ri

ri + r j
(2.1)

to be is the probability that Ti defeats Tj. Details and further information on the Bradley-Terry
model can be found in Agresti (2002). A simple iterative algorithm for finding the maximum
likelihood estimate, πi j, has been known for a long time, see Zermelo (1929). Recent work in
Hunter (2004) produces iterative maximum likelihood estimation algorithms for a wide class of
generalizations of the Bradley-Terry model.

When there are not enough paired comparisons and the comparison table is sparse, this
method can have undesirable features and does not provide meaningful results, see Agresti and
Hitchcock (2005). In fact, there are known conditions that ensure whether or not the algorithms
to find πi j converge, see Ford (1957) and Hunter (2004). Namely, one must show that in every
possible partition of the teams into two nonempty subsets, some team in the second subset beats
some team in the first subset at least once. This condition was first observed in Ford (1957) and
it is equivalent to showing that the associated directed network corresponding to this tournament
is strongly connected.
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When not enough games are played to ensure that the associated directed network corre-
sponding to a tournament is strongly connected, one can opt to use an approach in Keener
(1993), where the games scores are used to provide a reasonable estimate of πi j in Equation
(2.1). Namely,

πi j ≈
si j

si j + s ji
.

where si j is the total number of points scored by Ti against Tj. In this fashion, if si j > 0, one
adds a directed edge to from Tj to Ti. Hence, in sports such as the NFL where teams usually
score some points in each match, in order to satisfy the strong connectivity given in Ford (1957)
to obtain unique rankings, we must check if the undirected network is strongly connected.

In this paper, we check for strong connectivity of the directed network of NFL tournaments
and in fact, some seasons – 1972, 1976, 2007, and 2008 – are never strongly connected as a
directed graph, since there was an undefeated or a winless team. In general, over 12 weeks of
play are required for an NFL season to satisfy Ford’s condition. This is in contrast with the
(mostly) undirected network which is always strongly connected after week 3. Hence, in this
paper we use the estimative approach of Keener in order to obtain the Bradley-Terry data2 in
Section 4.

2.5 Markov Methods

For a Markov ranking method, consider a tournament which has completed Rm and consider a
random walker on Nm. Here, we let the ranking for Ti be an indication of the long-run proportion
of time this random walker spends at node i. To be more specific, imagine placing a random
walker at one of the n nodes at some starting time t = 0. At each time step this random walker
will be allowed to leave its current node and move along a single directed edge of Nm to a
(possibly) new node in the network. Then, as the number of time steps increases, we compute
the proportion of time, ri, that this random walker spends at each node i, and we will allow
that proportion to be the rating of each team Ti. Constructing a probabilistic ratings vector
r = [r1 r2 · · · rn]

T in this fashion forces the conditions each ri ≥ 0 and r1 + r2 + · · ·+ rn = 1.
We see from this description that one must define the transitional probabilities for each node,
that is, the probability that if this walker is at node i, then this walker will move to node j at the
next time step. It is here that the flexibility of this approach becomes more evident, as one can
incorporate the score outcomes of contests between Ti and Tj, the total number of wins for each
of Ti and Tj, etc. when defining each transitional probability. Before we get ahead of ourselves,
however, we must first be able to show that such long-run proportions are well-defined, which
is where the Perron-Frobenius Theorem, stated below, comes into play. For a proof, we refer
the reader to Keener (1993).

2For this data, we compute the rating vector based on the algorithm and MATLAB routine given in Hunter
(2004).
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Theorem 2.1 (Perron-Frobenius). Let A be an n×n matrix with associated network N. If N is
strongly connected, then there exists a positive, real eigenvalue λ of A such that

(i) λ ≥ |τ| for any eigenvalue τ of A,

(ii) there exists an eigenvector, r = [r1 r2 · · · rn]
T of A associated with λ such that ri ≥ 0 for

all i and r1 + r2 + · · ·+ rn = 1, and

(iii) if x = [x1 x2 · · · xn]
T is any eigenvector of A such that xi > 0 for every i, then r and x are

multiples of one another.

The λ and r that are defined in Theorem 2.1 are called the Perron value and Perron vector,
respectively. Further, we see from part (ii) of this theorem that r satisfies the properties of
a ratings vector in this probabilistic setting. Accordingly, once the transitional probabilities
for a Markov ranking method are defined, we allow the ratings vector of the tournament be
the corresponding Perron vector. This is accomplished in the following manner. First, from a
strongly connected network, Nm, we consider a corresponding, weighted matrix, Am

w = (aw
i j),

where each aw
i j is a nonnegative value that incorporates some statistic taken from the game

played between Ti and Tj. This could simply be done by letting Am
w = Am, or for example,

suppose Ti beats Tj by a score of 27-10. We may let aw
i j = 17, the score difference between

these teams, and we set aw
ji = 0. We then make a column-stochastic matrix Pm = (pi j) by

defining

pi j =
aw

i j

∑
n
k=1 aw

k j
, (2.2)

and then allowing pi j to be the transitional probability, that is, the probability that a random
walker will proceed from node j to node i. In this case, one can show that the Perron value of
Pm is λ = 1.

2.5.1 The PageRank Method

We now discuss a well-known ranking method, Google’s PageRank algorithm. Developed
by Brin and Page (1998) and Page, Brin, Motwani, and Winograd (1999), the PageRank ranking
algorithm is an important part of the original Google search engine. Using an adjacency matrix
formed out of Web page links, this algorithm constructs a Hyperlink matrix that will be used to
compute the rating scores of each Web page prior to the user’s query. In order to guarantee that
the Hyperlink matrix satisfies the Perron-Frobenius Theorem, the algorithm tweaks this matrix
to guarantee that every Web page can be visited from any other Web page by adjusting the dan-
gling nodes, i.e., nodes with no outlinks, and adding a special rank one, teleportation matrix.
We will summarize the details below using the above terminology of tournaments, but we refer
the reader to Langville and Meyer (2006) for complete details.

In the application of tournaments, we view the adjacency matrix as
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ai j =

{
1 if Tj beats Ti, and
0 otherwise.

Next, we form the Hyperlink matrix H as

hi j =

{
1/∑

n
k=1 ak j if Tj beats Ti, and
0 otherwise.

Here, the dangling nodes would correspond to undefeated teams which would have no directed
edges coming out of them. Assuming that T` is undefeated, the aforementioned tweak would be
to replace the `-th column of H with the vector 1

ne, where e is the n×1 vector with all 1’s as its
entries and then rename this new matrix as H. In the setting of a random walk, this is analogous
to moving from node ` to any other node in the network with equal probability. In order to
ensure that the corresponding network is strongly connected, the PageRank algorithm chooses
a value α ∈ (0,1) and a vector v= [v1 v2 · · · vn]

T such that each vi≥ 0 and v1+v2+ · · ·+vn = 1.
The last step is to define the Google Matrix:

Gα = αH+(1−α)veT . (2.3)

The vector v is called a personalization vector and the usual choice of v = 1
ne is the usual

PageRank method. If we think of a random walk in heuristic terms, the choice of α yields
that with probability α the random walker will follow the links from the network, while with
probability 1−α the walker will be teleported to different node in the network given by the
probabilities of the personalization vector3. The PageRank rating, and consequent ranking, is
obtained from the unique rating vector r of Gα as guaranteed by the Perron-Frobenius Theorem.

In this article, we consider different choices of the personalization vector, v, and the cor-
responding model is denoted as PageRank(v). For instance, one can use v to account for the
number of wins or the number of points scored. It is worth noting at this point that in the
Web search industry there is a great deal of ongoing research, such as that of Constantine and
Gleich (2010), on understanding how the choice of the personalization vector and teleportation
probability changes the Web search results.

2.5.2 Keener and Biased Random Walker Ratings

Two other well-established Markov ranking algorithms are the method developed by Keener
(1993) and the Biased Random Walker method developed by Callaghan, Mucha, and Porter
(2007).

Keener’s approach is to use game scores to compute ratings, employing, in part, Laplace’s
rule of succession to define his transitional probabilities. Indeed, Keener defines what we denote

3In Langville and Meyer (2004), it is given that Google originally used α = 0.85.
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as a weighted matrix (aw
i j) with

aw
i j = h

(
si j +1

si j + s ji +2

)
,

where h(x) = 1
2 +

1
2sgn

(
x− 1

2

)√
|2x−1| and si j is the total number of points scored by Ti

against Tj. We note that h is continuous, h
(1

2

)
= 1

2 , and away from 1
2 , h goes rapidly to zero

or one. Finally, using Equation (2.2), we define the transitional probabilities to move from one
node to another.

In the method of Callaghan et al. (2007)4 , the random walker is biased, based on game
outcomes, in its movements about the network. Here, the biased random walker finds himself
at a node, then he selects a match and chooses, with some fixed probability p ∈ (1

2 ,1), to move
to the winner of that match, whether or not the winner is the current node. More precisely, if Ti

has defeated Tj, then we add an edge from i to itself with weight p and an edge from i to j with
weight 1− p. In addition, we also add an edge from j to itself with weight 1− p and an edge
from j to i with weight p. Since each team may play several games, in order for the Biased
Random Walker method to be viewed as a Markov process, we must then add all the weights
from the possible multiple edges. Then, again using Equation (2.2), we define the transitional
probabilities to move about the network.

3 The Oracle Method

The new ranking method defined in this paper, called the Oracle method, is a customizable
Markov method that has the ability to consider multiple teams’ traits at once. The main idea
is to introduce an unbiased computer expert to aid our random walker in deciding where to
proceed in the network. To accomplish this, we create a new node in the network, called the
Oracle node, to be the (n+ 1)-st node. This idea is a generalization of the personalization
vector in the PageRank method that addresses a fundamental flaw when using certain Markov
methods to rank a tournament, namely, when an undefeated team loses to a winless team, and
subsequently, that previously winless team rises up near the top of the rankings. The Oracle
method not only provides a novel approach to this problem, but introduces several ways to take
other factors of potential interest into consideration when ranking teams in a tournament. While
we discuss the basic machinery of the Oracle method here, a detailed example of this algorithm
is given in Section 6.1.

Formally, we consider the Oracle to be a new, (n+1)-st node in the network, Nm, associated
to the tournament. We denote the new network, Nm

O , to be the network Nm with a new node,
n+ 1, that has a directed edge to and from node n+ 1 to each node 1,2, . . . ,n. This new node
changes the associated n×n matrix Am into an (n+1)× (n+1) Oracle matrix, Om, given by

4In Callaghan et al. (2007), the authors named their method as Random Walker Ranking. As that description
may also fit other Markov methods, we refer to it as Biased Random Walker.
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Om =

(
Am e
eT 0

)
. (3.1)

Using Equation (2.2) to compute the transitional probabilities, we have that

pn+1,i =
1

`i +1
and pi,n+1 =

1
n
,

where again, `i is the number of losses by Ti.
This shows that when the random walker visits teams with fewer loses, it will be more

likely move up to the Oracle. Also, once this walker visits the Oracle, it will subsequently move
to any team with equal likelihood, similar to the personalization vector modification of the
PageRank method. Observe that if we assign nonnegative transitional probabilities in moving
to and from the Oracle node, we ensure that the associated network is strongly connected.
Hence, the Perron-Frobenius Theorem can always be applied to find an Oracle rating vector,
rO ∈ Rn+1. We then define the rating vector, r ∈ Rn, by

ri =
rO

i

∑
n
j=i rO

i
. (3.2)

3.1 Oracle Variants

As aforementioned, one of the advantages of this newly introduced method is the fact that it
is customizable. In particular, for 1 ≤ i, j ≤ n, the Oracle method has the ability to consider
multiple traits separately in assigning the transitional probabilities while moving from node
i to node j, the transitional probabilities in moving from node i to the Oracle node, and the
transitional probabilities in moving from the Oracle node to node i. A discussion of how or why
the user might choose one customization over another is given in Section 5.

We shall refer to the moves from node i to the Oracle node as up moves and moves from
the Oracle node to node i as down moves. Hence, while traversing Nm

O , the random walker may
follow the original network, Nm, or go up to the Oracle node and subsequently move down to
a team by considering the Oracle as an unbiased computer expert that will guide the random
walker. In practice, the user assigns, via the transitional probabilities, the traits that the Oracle
will consider to be most important, and then the edges connected to the Oracle will be weighted
based on these traits. In order to accomplish this, let us refer to the vector u as the up direction
vector and the vector d as the down direction vector as depicted in Figure 1.

This modification, together with the classical modifications of the matrix Am, changes the
Oracle matrix to be a customized, weighted matrix given by

Om
w(u,d) =

(
Am

w d
uT 0

)
. (3.3)
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Oracle

TjTi

ujui di dj

Figure 1: After the end of m rounds, the Oracle is viewed as Tn+1 in the network Nm that has a
directed edge to and from each Ti. The direct edges can be weighted.

The entries of the vectors u and d may be chosen in several different ways to reflect statistics
which are particular to the interaction between two teams. We shall refer to a particular modi-
fication of the Oracle as given in (3.3) by w-Or(u,d), and in the case where Am

w = Am we will
simply denote this model and corresponding matrix as Or(u,d) and Om(u,d), respectively.

While several variants for the up and down direction vectors may exist, the two modifica-
tions that we consider the most natural for a sports tournament are as follows. First, one can
replace u and/or d with the win vector w, whose i-th coordinate is wi, the number of wins by
Ti. Second, we could replace either of the direction vectors with the score vector s, whose i-th
coordinate is si, the sum of the margin of victories of the games Ti has won. We also define for
any vector v ∈ Rn, the vector v+ such that v+i = vi + 1. We observe that in some applications
it is possible that a team is winless or that there may be multiple scoreless matches (such as in
soccer), meaning that the network is not strongly connected even with the addition of the Oracle
node. Using w+ or s+ in these cases will always ensure that the network is strongly connected.

Finally, one can also view the introduction of the Oracle node as a fictitious competitor who
wins one game and loses one game to every real opponent. This interpretation would not change
the relative winning records of the other teams, but does ensure that the condition in Ford (1957)
is satisfied, and hence the ordinary Bradley-Terry model can be used on our augmented Oracle
matrix. We shall refer to this modification as the Or-Bradley-Terry model.

3.2 An Example to Illustrate the Oracle Method

Let us consider a round-robin tournament with six teams, T1,T2, . . . ,T6, where we only have
information about the win or loss outcome, summarized in Table 1.

This example will illustrate how the Oracle method addresses what we consider a funda-
mental flaw when using other Markov ranking methods, in particular the PageRank method.
Consider the game played in the last round, where the previously undefeated T1 loses to the
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Round 1 Round 2 Round 3 Round 4 Round 5
T1 beats T4 T1 beats T5 T1 beats T3 T1 beats T2 T6 beats T1

T3 beats T5 T2 beats T3 T4 beats T2 T5 beats T4 T3 beats T4

T2 beats T6 T4 beats T6 T5 beats T6 T3 beats T6 T2 beats T5

Table 1: A simulated round-robin tournament with six teams.

previously winless T6. To find the PageRank rating for this tournament, the initial step is to
construct A5 and the associated network, N5. In order to find the Oracle ranking, we introduce
the Oracle node and consider the matrix O5 and the associated network, N5

O. These networks
are depicted in the left and right side of Figure 2, respectively.

T

T2 T

T T

T

2

4

6

5

3

1 T

T2 T

T T

T

2

4

6

5

3

1

Oracle

Figure 2: The associated networks N5 and N5
O after completion of the simulated, six-team

tournament.

Once we have the networks in place, we consider two PageRank ratings, one with the uni-
form Google method and the other using the personalization vector w+; we also consider the
three Oracle models Or(e,w+), Or(e,w), and Or(w,w). For each of these five methods, the
final rankings of the six teams are given in Table 2. We see from this table that both PageRank
methods, and in fact many other Markov methods as well, will promote T6 to the 2nd highest
ranking5, simply because they have beaten the best team. The main reason for this happening
is quite straightforward, as if one looks at the corresponding network on the left of Figure 2, we
see that anytime the random walker happens upon the node for T1, they must always proceed to

5All the variations of PageRank we have tested, always promote T6 to the 2nd highest ranking.

12



the node for T6 at the next time step. The alternative provided by the Oracle method, where the
random walker now has the option of proceeding to the Oracle node after it visits T1, greatly
changes these rankings depending on the statistics used in dictating the walker’s movements. In
fact, using the three Oracle customizations here, one may have T6 as the 3rd, the 4th, or even
the 6th best team, which highlights different features for each customization.

Win-Loss PageRank PageRank(v+) Or(e, w+) Or(e, w) Or(w, w)
T1 4-1 1st 1st 1st 1st 1st
T2 3-2 3rd 3rd 2nd 2nd 2nd
T3 3-2 4th 4th 4th 3rd 3rd
T4 2-3 5th 5th 5th 5th 4th
T5 2-3 6th 6th 6th 6th 5th
T6 1-4 2nd 2nd 3rd 4th 6th

Table 2: Final rankings of the simulated tournament using PageRank and Oracle methods.

4 NFL predictions – 1966–2013

In this section we apply the Oracle method Or(w+,s+) towards predicting the outcome of NFL
games. We predict only those games which transpire between Weeks 4 and the penultimate
week of each season in the Super Bowl era, 1966–2013, and the data6 given uses only these
weeks unless otherwise stated.

Using the WH method as a baseline, we compare the season-by-season accuracy of the
Oracle method to the prediction accuracy of the eight previously defined ranking systems from
Section 2: Experts Pick, Massey, Colley, Bradley-Terry model (Keener estimate), PageRank
with α = 0.85, Keener, and Biased Random Walker with p = 0.75. In the Appendix, Table 4
shows the prediction results for several other Oracle variants, PageRank for various values of α

and personalization vectors, and Biased Random Walker for other values of p. For the Experts
Pick method, we use the weekly ESPN Power Rankings (ESPN PR) as the expert ranking. The
earlier rankings available online only date back to 2002, so the predictions are split into two
categories: 1966–2013 and 2002–2013.

The reason for using the WH method as a baseline for predictive power (in fact, the impetus
for choosing this application for the Oracle method in the first place) is an article by Gregg
Easterbrook (2008). In this article, Easterbrook states the opinion that the WH method is a
relatively reliable way of choosing games, in fact, better than most pundits do with whatever up-
to-date information they have; moreover, it requires very little information to apply (“you don’t

6All computations were performed using MATLAB R2013a.
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even need to know who’s playing”, Easterbrook (2008)) and no computing power whatsoever.
The reason for only including games up through the penultimate week is simple, for in this same
article by Easterbrook, it is also states that the WH method “does have a weakness,” which is
that is does not do well in predicting outcomes of games in the final week of the season Indeed,
the playoff seeds for a team may already be set in the last week of the NFL and a team may not
play all of it starters, hence the outcomes of games in the final week of the season do not reflect
the true ability of a team. Thus, to be fair we exclude this week from all prediction comparisons
in this section, which are summarized in Table 3. We have also included an identical prediction
comparison taking into consideration the final week of each season, and this is shown in the
Appendix in Table 8.

We can consider the starting week for our predictions as early as Week 4 and as late as Week
11. The reason for beginning with games in Week 4 is because we need the tournament net-
works to be strongly connected for all models considered before we can use the corresponding
irreducible matrices to make foresight predictions. Through MATLAB we verified that the net-
works for all models do become strongly connected in either Weeks 2 or 3 of each season, i.e.,
we can employ all of the computerized ranking methods to make predictions beginning with
the Week 4 games of each season. From a practical standpoint, beginning after three completed
weeks of competition allows each model to gather more “starting data” in order to hopefully
make better predictions. The reason to also consider the predictions starting at Week 11 is to
allow higher reliability of the rankings as majority of the season has been played and we may
be more confident in the rankings at that point. We also did not consider foresight predictions
starting after Week 11 since earlier NFL seasons (prior to 1978) had only 14 weeks and be-
cause we are excluding the last week, we wanted to have at least three weeks where we could
predict games outcomes. We remark that the 1982 NFL season was shortened to nine weeks
due to a player strike. Hence, we did not included it in the late foresight predictions starting
at Week 11. In addition, one could consider a modification of the foresight prediction method
where we start predicting games at Week 11, using the rank data up to Week 10 and predict the
subsequent weeks as if each week is the eleventh week. This approach potentially avoid mixing
different levels of reliability and variations of the ranking methods after the results from week
to week. The results of this prediction model, which we call the 10-week fixed foresight model,
are similar to the other foresight predictions in this paper, and we include them in the Appendix
in Table 7.

Finally, in choosing the WH method as the baseline, we also programmed it to be the case
that if any method gives two NFL teams the same rank in a week where they will be playing
each other, the routine chooses the home team as the winner.

When starting the foresight predictions in Week 4 and Week 11, the WH method correctly
picked 62.89% and 63.94%, respectively, of the NFL games played in the 1966–2013 seasons
and 62.25% and 65.76%, respectively, of the games played in the 2002–2013 seasons. These
numbers are given in the lefthand side of Table 3, as well as the prediction percentages for the
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1966–2013 2002–2013
Starting Week Week 4 Week 11 Week 4 Week 11

WH 62.89% 63.94% 62.25% 65.76%
ESPN PR n/a n/a 63.02% 65.48%

Massey 62.77% 64.99% 63.80% 67.41%
Colley 61.79% 63.15% 61.99% 65.32%

PageRank 59.33% 61.44% 58.67% 60.61%
Keener 60.08% 62.73% 61.04% 65.07%

Biased Voter 60.80% 62.86% 61.17% 64.19%
Bradley-Terry Model 62.49% 64.23% 63.58% 66.98%

Oracle(w+,s+) 63.41% 65.09% 64.10% 66.63%

Table 3: Average of correct foresight prediction percentage of all NFL games starting either in
Week 4 or in Week 11. In bold, we indicate methods whose predictions, on average, are better
than or equal to the WH method.

other methods. For instance, the Or(w+,s+) method correctly picked 63.41% of games starting
from Week 4 and 65.09% of all games starting in Week 11 of the NFL games played in the
1966–2013 seasons, outperforming all of the methods given in Section 2. During similar pre-
dictions for NFL games played in the 2002–2013, the Or(w+,s+) method is only outperformed
by the Massey method during the foresight predictions starting from Week 11. We highlight that
the other Markov methods - PageRank, Keener, Biased Random Walker - had fewer foresight
predictions than the WH method during all seasons.

5 Discussion

The Oracle method used in this paper to rank teams in a tournament was initially developed
to address a flaw when using certain Markov methods to rank teams in a tournament. Namely,
when an undefeated team loses to a winless team, and subsequently, that previously winless
team rises up to be ranked as the second best team, this is viewed by most as an incorrect
ranking. The method to generalize the notion of teleportation by introducing an Oracle node,
and then using the choices of the up and down vectors given in the previous sections, indeed
solves this problem when ranking teams in a sports tournament. Once this problem had been
addressed, we chose to further validate the Oracle method rankings by using a particular variant,
Or(w+,s+), to perform foresight predictions of NFL contests and then comparing this Oracle
method’s predictive powers against other well-known ranking methods. We decided to use
the NFL, instead of another major sports because the NFL has a very structured schedule and
matches that rarely end up in tie. We chose a foresight prediction method to evaluate the ranking
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methods as this closely approach the experience of a sports fan. Namely, a fan predicts the
outcome of the games in the next round based on all the cumulative information of the season
up to that round. We provide results starting predictions at Week 4 to best compare with the
expert analyses that begin as early as rosters are announced. We also present our prediction
numbers when starting our predictions at Week 11 so that all ranking methods have more of
the season to compile their ranks, and accordingly, the predictions could be more reliable. In
addition, we can also consider the starting week of our predictions to be any week between Week
4 and Week 11, and we provide the accompanying data in Tables 5 and 6 of the Appendix.

We find that the primary strength of this model lies in its ability to consider team traits
which are customized according to the whims of the user. For example, a user may believe that
some team statistic, such as time of possession, is one of the most important traits in ranking
NFL teams. Accordingly, the user can implement the Oracle method by encoding the time of
possession statistic into the up and down vectors, essentially making it the most important factor
in this user’s rankings. Despite the possibilities for personalizations for the Oracle method and
other ranking methods, the traits that performed the best were still the traits that any successful
team would like to have - a large number of victories and scoring as many points as possible,
which are of course, not unrelated. Another strength of the Oracle method is that by having
positive up and down vectors, the introduction of the Oracle node in the network always makes
the network strongly connected, thereby providing an actual rank with only a small set of data7.

In terms of weaknesses of the Oracle method relative to other, non-human algorithms, there
is no a priori method for assigning the traits of the up and down vectors to give the best pre-
dictions. In fact, the overall performances of many the different Oracle variants are very close
to each other with respect to NFL game predictions, as we see in Table 4, and so in practice, it
is quite possible that only a few traits ever need to be considered. Another shortcoming is that
the Oracle method, as implemented here, gives no bias to a team playing at home unless they
have an identical ranking to their current opponent, which almost never occurs8. Since we are
comparing the Oracle method (and all others) to the WH method, it seems like this would be
good to incorporate somehow, and we note that there are probabilistic models which account
for home field advantage, such as the model of Bradley and Terry (1952). Finally, unlike the
Massey method, the Oracle method is not constructed so as to rank teams in a way that allows
the user to predict score outcomes of games.

We also observe from Table 4 that the Or-Bradley-Terry model, has similar performance to
other ranking methods, but it is still lower than the WH method and also lower than the Keener

7One could certainly argue that this addition of the Oracle node opens the possibility for a distortion of the
rankings in some way, especially by artificially forcing connectedness early in season. However, the data supports
that, at least for standard choices of the statistics - score differential, wins, etc. - incorporated into the up and down
vectors, this does not happen.

8Teams with identical ranks for all methods other than WH meet, on average, less than once per year in the
weeks considered. In the WH method, teams with the same record meet, on average, 24 times per season in the
weeks considered.
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variant we use throughout his paper. This leads one to posit that the improvement from the
Oracle method is due to using Markov estimation methods and not simply by adding a “new
team” in the tournament. The natural interpretation of the direct edges to and from the Oracle
indicates that under the Markovian method, the standard choices of the statistics, such as wins
and scores, are good measures to rank the teams in the NFL.

In summary, we have provided a viable and novel alternative to previously studied Marko-
vian processes to rank tournaments. Furthermore, the groundwork developed here may be
adapted by others according to their particular dataset and desired validation methods.
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6 Appendix

One of the advantages in using the Oracle method is the possible customization that can be
implemented. We will now show in more detail how these customizations are done and how the
ranks are computed. We also include an expanded list of the methods we considered in the NFL
predictions from Section 4.

6.1 Oracle Implementation

Let us take a second look into six-team the round-robin tournament with outcomes summarized
in Table 1. As stated before, one can consider different up and down vectors for the Oracle
method. Indeed, having only information about the outcomes of the games, we use only e,
w, and w+ as the possible up and down vectors in the ranking, and after five rounds we have
w = [4 3 3 2 2 1]T and w+ = [5 4 4 3 3 2]T . The corresponding Oracle matrices and their
corresponding column-stochastic matrix Pm = (pi j) would be as follows:
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O5(e,w+) =



0 1 1 1 1 0 5
0 0 1 0 1 1 4
0 0 0 1 1 1 4
0 1 0 0 0 1 3
0 0 0 1 0 1 3
1 0 0 0 0 0 2
1 1 1 1 1 1 0


and P5(e,w+) =



0 1
3

1
3

1
4

1
4 0 5

21
0 0 1

3 0 1
4

1
5

4
21

0 0 0 1
4

1
4

1
5

4
21

0 1
3 0 0 0 1

5
3
21

0 0 0 1
4 0 1

5
3
21

1
2 0 0 0 0 0 2

21
1
2

1
3

1
3

1
4

1
4

1
5 0


.

O5(e,w) =



0 1 1 1 1 0 4
0 0 1 0 1 1 3
0 0 0 1 1 1 3
0 1 0 0 0 1 2
0 0 0 1 0 1 2
1 0 0 0 0 0 1
1 1 1 1 1 1 0


and P5(e,w) =



0 1
3

1
3

1
4

1
4 0 4

15
0 0 1

3 0 1
4

1
5

3
15

0 0 0 1
4

1
4

1
5

3
15

0 1
3 0 0 0 1

5
2
15

0 0 0 1
4 0 1

5
2
15

1
2 0 0 0 0 0 1

15
1
2

1
3

1
3

1
4

1
4

1
5 0


.

O5(w,w) =



0 1 1 1 1 0 4
0 0 1 0 1 1 3
0 0 0 1 1 1 3
0 1 0 0 0 1 2
0 0 0 1 0 1 2
1 0 0 0 0 0 1
4 3 3 2 2 1 0


and P5(w,w) =



0 1
5

1
5

1
5

1
5 0 4

15
0 0 1

5 0 1
5

1
5

3
15

0 0 0 1
5

1
5

1
5

3
15

0 1
5 0 0 0 1

5
2
15

0 0 0 1
5 0 1

5
2
15

1
5 0 0 0 0 0 1

15
4
5

3
5

3
5

2
5

2
5

1
5 0


.

For the ranking methods PageRank and PageRank(w+), we simply used

H =



0 1
2

1
2

1
3

1
3 0

0 0 1
2 0 1

3
1
4

0 0 0 1
3

1
3

1
4

0 1
2 0 0 0 1

4
0 0 0 1

3 0 1
4

1 0 0 0 0 0


and α = 0.85. Hence we obtained the two column-stochastic matrices

Gα = αH+
1
6
(1−α)eeT and Gα(w+) = αH+

1
6
(1−α)w+eT .

Finally, the rankings in Table 2 were obtained by finding the Perron vector of each of the
column-stochastic matrices above.

6.2 Expanded Results for NFL Predictions

In the predictions, the winner is clearly determined by the score in each game, but the actual
score may also be used as another statistic for each match. In addition to the usual incidence

18



matrix Am that captures the number of wins of each team, we also consider the weighted score
matrix Am

s = (as
i j), where if Ti beats Tj, we have as

i j is the score difference and as
ji = 0. In the

case of NFL games, the margin of victory can also be measured in the number of possessions
(mostly touchdowns) that team is ahead. Hence, we consider the weighted margin matrix Am

m =

(am
i j), where am

i j = as
i j/7. Ranking methods using the score and margin matrix are denoted using

a prefix of s- and m-, respectively. Finally we consider w+ and s+ as possible customizations
for the PageRank and Oracle variants.

In Table 4, we give an expanded list of models, again with the percentage of games each
method picked correctly starting in Week 4 and Week 11. In this table, numbers given in bold are
those that outperform the WH method. We note that Oracle variants which do not incorporate
the score into either of the up or down vectors do a bit worse than those that do use this statistic,
which would lead one to the conclusion that the score difference between teams in NFL games
does give some insight into the quality of the teams in that league.

1966–2013 2002–2013
Starting Week Week 4 Week 11 Week 4 Week 11
WH 62.89% 63.94% 62.25% 65.76%
ESPN PR n/a n/a 63.02% 65.48%
Massey 62.77% 64.99% 63.80% 67.41%
Colley 61.79% 63.15% 61.99% 65.32%
Bradley-Terry Model 62.49% 64.23% 63.58% 66.98%
Or-Bradley-Terry Model 61.71% 63.21% 61.90% 65.50%
Keener 60.08% 62.73% 61.04% 65.07%
Biased Voter (p = 0.60) 60.85% 62.44% 60.99% 64.88%
Biased Voter (p = 0.75) 60.80% 62.86% 61.17% 64.19%
Biased Voter (p = 0.90) 60.53% 63.23% 60.95% 63.57%
Or(e,e) 60.06% 62.02% 59.48% 61.30%
Or(e,w+) 60.59% 62.24% 60.18% 62.00%
Or(e,s+) 61.83% 63.04% 61.69% 63.40%
Or(w+,e) 61.53% 63.02% 61.81% 64.88%
Or(w+,w+) 61.63% 63.05% 61.86% 64.88%
Or(w+,s+) 63.41% 65.09% 64.10% 66.63%
Or(s+,e) 60.16% 61.27% 58.36% 61.72%
Or(s+,w+) 61.47% 62.39% 60.78% 64.36%
Or(s+,s+) 63.20% 64.90% 64.15% 67.06%
s-Or(e,e) 60.38% 62.94% 60.43% 61.56%
s-Or(e,w+) 60.52% 62.98% 60.52% 61.91%
s-Or(e,s+) 60.66% 62.89% 60.69% 62.09%
s-Or(w+,e) 61.03% 63.01% 61.56% 62.78%
s-Or(w+,w+) 61.04% 62.79% 61.25% 62.26%

Continued on next page
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Table 4 – Continued from previous page
s-Or(w+,s+) 61.31% 62.98% 61.90% 63.22%
s-Or(s+,e) 62.88% 64.44% 64.07% 66.46%
s-Or(s+,w+) 62.05% 63.71% 62.33% 64.78%
s-Or(s+,s+) 63.41% 64.93% 63.68% 65.76%
m-Or(e,e) 60.94% 63.09% 61.21% 63.13%
m-Or(e,w+) 60.89% 62.70% 60.82% 62.70%
m-Or(e,s+) 61.67% 63.33% 61.86% 63.75%
m-Or(w+,e) 61.92% 63.62% 62.64% 64.54%
m-Or(w+,w+) 61.90% 63.49% 61.77% 63.83%
m-Or(w+,s+) 62.76% 64.35% 63.16% 65.33%
m-Or(s+,e) 62.26% 63.65% 61.86% 66.21%
m-Or(s+,w+) 62.06% 63.30% 62.03% 65.57%
m-Or(s+,s+) 63.13% 64.74% 63.81% 66.45%
PageRank (α = 0.65) 59.56% 61.77% 59.40% 61.66%
PageRank (α = 0.85) 59.33% 61.44% 58.67% 60.61%
PageRank(w+) (α = 0.65) 60.22% 62.33% 60.13% 62.52%
PageRank(w+) (α = 0.85) 59.43% 61.50% 59.10% 61.13%
PageRank(s+) (α = 0.65) 61.88% 63.65% 61.43% 63.75%
PageRank(s+) (α = 0.85) 60.02% 62.15% 59.61% 62.18%
s-PageRank (α = 0.65) 60.61% 62.69% 61.30% 62.43%
s-PageRank (α = 0.85) 60.23% 62.84% 60.82% 62.43%
s-PageRank(w+) (α = 0.65) 60.71% 62.65% 61.04% 62.17%
s-PageRank(w+) (α = 0.85) 60.56% 63.03% 60.91% 62.52%
s-PageRank(s+) (α = 0.65) 61.49% 63.37% 61.60% 63.39%
s-PageRank(s+) (α = 0.85) 60.47% 62.85% 60.91% 62.52%
m-PageRank (α = 0.65) 60.69% 63.07% 61.56% 63.57%
m-PageRank (α = 0.85) 60.30% 62.78% 61.04% 63.39%
m-PageRank(w+) (α = 0.65) 60.94% 63.13% 61.43% 63.66%
m-PageRank(w+) (α = 0.85) 60.25% 62.30% 60.61% 62.87%
m-PageRank(s+) (α = 0.65) 61.48% 63.42% 61.95% 63.49%
m-PageRank(s+) (α = 0.85) 60.73% 62.96% 61.56% 63.83%

Table 4: Overall prediction percentage of all NFL games and average number of correctly
predicted NFL games per season, relative to the WH method. In bold, we indicate methods
whose predictions, on average, are better than or equal to the WH method.

In Table 5 and Table 6, for each of the eight prediction methods we give the overall pre-
diction percentage of all NFL games in the seasons ranging from 1966–2013 and 2002–2013,
respectively, by considering all possible starting weeks between Week 4 and Week 11. More

20



importantly, when just comparing the predicting power of the Or(w+,s+) model in relation to
other Markov methods, the results show that Oracle model provides a viable alternative to a
Markovian method to rank sport teams.

NFL Seasons between 1966–2013

Starting Week Week 4 Week 5 Week 6 Week 7
WH 62.89% 62.72% 62.89% 63.00%

Massey 62.77% 63.19% 63.37% 63.71%
Colley 61.79% 61.83% 62.07% 62.07%

PageRank 59.33% 59.46% 59.51% 59.88%
Keener 60.08% 60.49% 60.87% 61.36%

Biased Voter 60.80% 61.13% 61.56% 61.91%
Bradley-Terry Model 62.49% 62.82% 63.40% 63.49%

Oracle(w+,s+) 63.41% 63.26% 63.63% 63.57%
Starting Week Week 8 Week 9 Week 10 Week 11

WH 63.00% 63.42% 63.61% 63.94%
Massey 63.96% 64.04% 64.52% 64.99%
Colley 62.13% 62.31% 62.69% 63.15%

PageRank 59.98% 60.36% 60.70% 61.44%
Keener 61.82% 61.94% 62.28% 62.73%

Biased Voter 61.88% 62.01% 62.36% 62.86%
Bradley-Terry Model 63.50% 63.78% 64.01% 64.23%

Oracle(w+,s+) 63.78% 64.22% 64.70% 65.09%

Table 5: Average of correct foresight prediction percentage of all NFL games starting in Week
4 up to Week 11. In bold, we indicate methods whose predictions, on average, are better than
or equal to the WH method.

In Table 7, for each of the eight prediction methods we give the overall prediction percentage
of all NFL games in the seasons ranging from 1966 – 2013 and 2002 – 2013, respectively, using
the 10-week fixed prediction model described in Section 4. Comparison with Table 3 shows
that the results are similar to the usual foresight prediction.
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NFL Seasons between 2002–2013

Starting Week Week 4 Week 5 Week 6 Week 7
WH 62.25% 62.41% 62.67% 63.06%

ESPN PR 63.02% 63.15% 63.37% 63.66%
Massey 63.80% 64.31% 64.74% 65.20%
Colley 61.99% 62.31% 62.46% 62.73%

PageRank 58.67% 58.87% 58.58% 58.76%
Keener 61.04% 61.58% 61.52% 62.19%

Biased Voter 61.17% 61.71% 61.96% 62.29%
Bradley-Terry Model 63.58% 64.04% 64.54% 64.99%

Oracle(w+,s+) 64.10% 64.22% 64.34% 64.65%
Starting Week Week 8 Week 9 Week 10 Week 11

WH 63.61% 63.98% 64.26% 65.76%
ESPN PR 64.09% 63.97% 64.02% 65.48%

Massey 65.96% 65.93% 66.07% 67.41%
Colley 63.60% 63.77% 63.96% 65.32%

PageRank 59.06% 59.68% 59.64% 60.61%
Keener 63.01% 63.45% 63.50% 65.07%

Biased Voter 62.94% 63.04% 63.20% 64.19%
Bradley-Terry Model 65.72% 65.53% 65.55% 66.98%

Oracle(w+,s+) 65.42% 65.26% 65.47% 66.63%

Table 6: Average of correct foresight prediction percentage of all NFL games starting in Week
4 up to Week 11. In bold, we indicate methods whose predictions, on average, are better than
or equal to the WH method.

Table 8 is the same as Table 3, except that predictions are made for games played from
Week 4 or Week 11 through the the final week of each season (rather than the penultimate
week). If comparing the results in these two tables, one would see that the predictive power of
the Or(w+,s+) model improves relative to the WH method, which is not surprising since the
WH method is assumed to not do so well at predicting games in the final week of the season.
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1966–2013 2002–2013
Starting Week Week 11 Week 11

WH 63.77% 65.31%
ESPN n/a 64.86%

Massey 64.30% 65.93%
Colley 63.08% 63.57%

PageRank 61.13% 61.48%
Keener 61.69% 64.30%

Biased Voter 62.51% 62.51%
Bradley-Terry Model 63.97% 65.14%

Oracle(w+,s+) 64.72% 65.57%

Table 7: Average of correct 10-week fixed foresight prediction percentage of all NFL games.
In bold, we indicate methods whose predictions, on average, are better than or equal to the WH
method.

1966–2013 2002–2013
Starting Week Week 4 Week 11 Week 4 Week 11

WH 62.79% 63.61% 61.98% 64.75%
ESPN PR n/a n/a 62.57% 64.29%

Massey 62.95% 65.13% 63.53% 66.39%
Colley 61.77% 63.00% 61.61% 64.15%

PageRank 59.35% 61.08% 58.87% 60.72%
Keener 60.10% 62.34% 61.06% 64.53%

Biased Voter 60.73% 62.45% 60.94% 63.33%
Bradley-Terry Model 62.63% 64.32% 63.41% 66.17%

Oracle(w+,s+) 63.45% 65.05% 63.93% 65.95%

Table 8: Average of correct foresight prediction percentage of all NFL games starting either in
Week 4 or in Week 11 up to, and including, the final week of the season. In bold, we indicate
methods whose predictions, on average, are better than or equal to the WH method.
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