HW #5, due February 20th

Chapter 5: 4, 8, 10, 13, 19, 21, 24

Extra Problems for HW #5

Problem 1: Prove the following lemma that was given in class: A cycle of length \(n \) has order \(n \).

Problem 2: Prove or disprove the following statement: \(S_6 \) contains a cyclic subgroup of order 8.

Problem 3: Find 8 subgroups of \(S_4 \) which are not \(e, S_4, D_4, \) or \(A_4 \).

Problem 4: Let \(X, Y \) be groups. We say that \(f : X \to Y \) is a group homomorphism if, given \(u, v \in X \), \(f(uv) = f(u)f(v) \). For any \(n \in \mathbb{N} \), define \(\text{sgn}: S_n \to \{\pm1\} \) by \(\text{sgn}(\sigma) = 1 \) if \(\sigma \) is even and \(\text{sgn}(\sigma) = -1 \) if \(\sigma \) is odd. Show that \(\text{sgn} \) is a homomorphism.