Problem 1: Let G be an Abelian group and suppose that $G = H \times K$ for some $H, K \leq G$. Suppose p is prime. Show that $G^p = H^p \times K^p$. Here, $G^n = \{x^n \mid x \in G\}$.

Problem 2: Find a ring, R, with unity and a subring S of R such that S has a unity which differs from R.

Problem 3: Let R be a ring and suppose S and T are subrings of R. Prove or disprove the following assertions.

(a) $S \cap T$ is a subring of R.

(b) $S \cup T$ is a subring of R.

Problem 4: Show that \mathbb{Z}_n is an integral domain if and only if n is prime.