Read Chapter 8 and the proof of Theorem 7.3.

Chapter 5: 31

Chapter 7: 1, 2, 6-9, 12-16, 18-20, 22, 23, 25, 26, 28, 31, 33, 36, 40, 42, 49

Extra Problems for HW #8

Problem 1: We say that a subgroup H of a group G is a normal subgroup of G if $aH = Ha$ for every $a \in G$, and we denote this by $H \triangleleft G$. Show that if $|G:H| = 2$, then $H \triangleleft G$.

Problem 2: For $n \in \mathbb{N}$, let S_n denote the n^{th} symmetric group and let A_n denote the alternating group. Determine $|S_n : A_n|$.

Problem 3: Suppose $K = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $G = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in GL(2, \mathbb{Z}) | ac = \pm 1 \}$, and $H = \{ M \in G | b = 0 \}$.

a.) Show that $H \leq G \leq GL(2, \mathbb{R})$.

b.) Show that $\langle K \rangle \triangleleft G$.

Bonus Problem #5: Suppose G and H are finite groups and let $G_k = \{ x \in G | |x| = k \}$ and $H_k = \{ x \in H | |x| = k \}$. If $|G_k| = |H_k|$ for every possible value of k, must it be the case that $G \approx H$?

Bonus Problem #6: Suppose $H \leq (\mathbb{Q}, +)$ under addition. Show that if $H \neq \mathbb{Q}$, then $|\mathbb{Q} : H| = \infty$.