Problem 1: Suppose $a, n \in \mathbb{N}$ and let $d = \text{gcd}(a, n)$.

(i) Show that the equation $ax \equiv 1 \text{ mod } n$ has a solution if and only if $d = 1$

(ii) Show that $U(n) = \{k \mid 0 < k < n \text{ and } \gcd(k, n) = 1\}$ is a group under multiplication modulo n.

(iii) Show that the set \mathbb{Z}_p^* is a group under multiplication modulo p if and only if p is prime.

Problem 2: Let G denote the set $\{A_0, A_1, A_2, A_3, \ldots\} \subseteq M_n(\mathbb{R})$ under matrix multiplication, where for each $i \geq 0$, $\det(A_i) = 2^i$. If we further suppose that for every $i, j \geq 0$, $A_iA_j = A_{i+j}$, either prove that G is a group or explicitly state why it cannot be a group.

Problem 3: Let $A = \{x + iy \in \mathbb{C} \mid x = 0 \text{ or } y = 0\}$. For any $a, b, \in A$, define $a \ast b = \sqrt{a^2 + b^2}$. Prove that A is a group under the operation \ast or explicitly state why it cannot be a group.

Problem 4: Define the operation \ast on \mathbb{Q}^+ by $a \ast b = \frac{ab}{2}$ for any $a, b \in \mathbb{Q}^+$. Prove that (\mathbb{Q}^+, \ast) is a group under the operation \ast or explicitly state why it cannot be a group.

Bonus Problem #2: Let $S = \mathbb{R} - \{-1\}$, and define \ast on S by $a \ast b = a + b + ab$ for any $a, b, \in S$. Prove that (S, \ast) is a group under the operation \ast or explicitly state why it cannot be a group.