

MATH 3362-1 Modern Algebra I Spring 2014

Handout on The Fundamental Theorem of Finite Abelian Groups

Theorem 0.1 (Fundamental Theorem of Finite Abelian Groups). Every finite Abelian group is a direct product of cyclic groups of prime power order. Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely determined by the group.

Example 0.2. Suppose we know that G is an Abelian group of order $200 = 2^3 \cdot 5^2$. Then G is isomorphic to one of the following groups:

$$\begin{split} & \mathbb{Z}_8 \times \mathbb{Z}_{25}, \ \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_{25}, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25}, \\ & \mathbb{Z}_8 \times \mathbb{Z}_5 \times \mathbb{Z}_5, \ \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5. \end{split}$$

Definition 0.3. Let G be a group and suppose $H, K \leq G$. We say that G is an *internal direct product* of H and K, written as $G = H \otimes K$ if G = HK and $H \cap K = \{e\}$.

Remark 0.4. If $G = H \otimes K$, then it turns out that $H, K \triangleleft G$. Moreover, hk = kh for every $h \in H$ and $k \in K$, even though the elements of H (and similarly, K) may not commute with each other.

Remark 0.5. We have essentially made G from two of its subgroups. Moreover, if $G = H \otimes K$, then the previous theorem give that G/H and G/K are both groups. Unsurprisingly, we can show that $G/H \cong K$ and $G/K \cong H$, that is, the algebra we want to happen does happen in this scenario.

Theorem 0.6. Suppose $G = \langle a \rangle \otimes \langle b \rangle$ is a group such that |a| = m and |b| = n. Then $G \cong \mathbb{Z}_m \times \mathbb{Z}_n$. **Lemma 1:** Let G be a finite Abelian group of order $p^n m$, where $n \in \mathbb{N}$, p is prime, and gcd(p,m) = 1. Then $G = H_p \otimes K$, where $H_p = \{x \in G \mid x^{p^n} = e\}$ and $K = \{x \in G \mid x^m = e\}$. Moreover, $|H_p| = p^n$.

How Does Lemma 1 Help? Suppose G is an Abelian group such that $|G| = p_1^{a_1} p_2^{a_2} \cdots p_i^{a_j}$. Then we know that

$$G = H_{p_1} \otimes K, \text{ where } |H_{p_1}| = p_1^{a_1} \text{ and } |K| = p_2^{a_2} \cdots p_j^{a_j}$$

$$= H_{p_1} \otimes H_{p_2} \otimes K', \text{ where } |H_{p_1}| = p_1^{a_1}, |H_{p_2}| = p_2^{a_2}, \text{ and } |K| = p_3^{a_3} \cdots p_j^{a_j}$$

$$\vdots$$

$$= H_{p_1} \otimes H_{p_2} \otimes \cdots \otimes H_{p_j}, \text{ where } |H_{p_m}| = p_m^{a_m} \text{ for } 1 \leq m \leq j.$$

<u>Lemma 2:</u> Let G be an Abelian group of order p^n , where $n \in \mathbb{N}$ and p is prime. If $a \in G$ has maximal order, then $G = \langle a \rangle \otimes K$ for some $K \leq G$.

<u>How Does Lemma 2 Help?</u> This tells us how to further break up our groups of prime power orders. It also allows us to prove Lemma 3.

<u>Lemma 3:</u> Any Abelian group of prime power order is an internal direct product of cyclic groups.

How Does Lemma 3 Help? Once we have that $G = H_{p_1} \otimes H_{p_2} \otimes \cdots \otimes H_{p_j}$ from Lemma 1, we then know that each $H_{p_\ell} = \langle a_{\ell_1} \rangle \otimes \langle a_{\ell_2} \rangle \otimes \cdots \otimes \langle a_{\ell_k} \rangle$.

<u>Lemma 4:</u> Let G be an Abelian Group and define $G^n = \{x^n \mid x \in G\}$. Then $G^n \leq G$. Moreover, if p is a prime such that p||G|, then $G^p \neq G$.

How Does Lemma 4 Help? We use this in the proof of Lemma 5.

<u>Lemma 5:</u> Suppose that G is an Abelian group of order p^n , where $n \in \mathbb{N}$ and p is prime. If $G = H_{p_1} \otimes H_{p_2} \otimes \cdots \otimes H_{p_w}$ and $G = K_{p_1} \otimes K_{p_2} \otimes \cdots \otimes K_{p_z}$, where each H_{p_i} and K_{p_j} is a non-trivial, cyclic subgroup of G such that $|H_{p_1}| \geq |H_{p_2}| \geq \cdots \geq |H_{p_w}|$ and $|K_{p_1}| \geq |K_{p_2}| \geq \cdots \geq |K_{p_z}|$, then w = z and $|H_{p_r}| = |K_{p_r}|$ for every $1 \leq r \leq w$.

How Does Lemma 5 Help? This gives us the "uniquely determined" part of the theorem.