Modern Algebra I

Bonus Problems

All bonus problems are due no later than 8:00 a.m. on Wednesday, May 11th.

Bonus Problem 1. (10 points) Prove that for any $n \in \mathbb{N}$, n has a unique representation of the form $n = c_1 1! + c_2 2! + \cdots + c_k k!$, for some $k \ge 1$, with integers $0 \le c_j \le j$ for each j and $c_k \ne 0$. (Originally on Homework #1)

Bonus Problem 2. (10 points) Let $S = \mathbb{R} - \{-1\}$, and define * on S by

$$a * b = a + b + ab$$

for any $a, b, \in S$. Prove or disprove that (S, *) is a group. (Originally on Homework #2)

Bonus Problem 3. (10 points) Let G be a group and suppose that H, K are proper subgroups of G. Prove that $G \neq H \cup K$. (Originally on Homework #4)

Bonus Problem 4. (10 points) Let G be a group and suppose $x, y \in G$ such that xy = yx and gcd(|x|, |y|) = 1. Show that |xy| = |x||y|. Futher, find some a, b in a group H such that gcd(|a|, |b|) = 1, but $|ab| \neq |a||b|$. (Originally on Homework #4)

Bonus Problem 5. (10 points) Show that any finite group $G \neq \{e\}$ has some element of prime order. (Originally on Homework #4)

Bonus Problem 6. (10 points) Let P be the group of all polynomials in x with coefficients in \mathbb{Z} under addition. Prove that $P \approx (\mathbb{Q}^+, \cdot)$. (Originally on Homework #7)

Bonus Problem 7. (10 points) Suppose G and H are finite groups and let

 $G_k = \{x \in G \mid |x| = k\}$ and $H_k = \{x \in H \mid |x| = k\}.$

Find, with proof, G and H such that $|G_k| = |H_k|$ for every possible value of k, but $G \not\approx H$? (Originally on Homework #7)