Exam 1 Review Assignment, due Monday, September 24th (30 points)

1. (a) Evaluate \(\lim_{t \to 0} \left(\frac{1}{t^{1/4} + 1} - \frac{1}{t} \right) \).
(b) Evaluate \(\lim_{x \to 2} \frac{x^4 - 2x^3 + 3x^2 - 15x + 18}{x^3 - 8} \).
(c) Evaluate \(\lim_{x \to 3} \frac{\sqrt[3]{7} - x}{\sqrt[3]{4} - x - 1} \).
(d) Evaluate \(\lim_{\theta \to 0} \theta^4 \cot^3(2\theta) \csc(3\theta) \).

2. Suppose that \(f(x) = x^3 \sin(1/x) \) for \(x \neq 0 \) and \(f(0) = 0 \). Calculate \(f'(0) \) if it exists.

3. Use the definition of the derivative to find \(g'(x) \) if \(g(x) = \frac{x}{\sqrt{x} + 1} \).

4. Let \(p(t) = t^2 - c^2 \) for \(t < 3 \) and \(p(t) = 2ct + 2 \) for \(t \geq 3 \). Find all values of \(c \) that make \(p(t) \) continuous on \((-\infty, \infty) \).

5. Find all points on the graph of \(f(x) = 2x^3 + 3x^2 - 12x + 1 \) where the tangent line is horizontal.

6. Compute the following derivatives.
 (a) Find \(f'(-1) \) if \(f(x) = (x^2 + 4x)^2 (x^3 - 1)^3 (x^4 + x) \).
 (b) Find \(h'(0) \) if \(h(q) = \frac{(q^3 + 3q + 1)^{\frac{3}{2}}}{q^{1/2}} \).

7. Suppose that \(g(2) = 4 \) and \(g'(2) = -3 \).
 (a) Find an equation of the line tangent to the graph of \(g(x) \) at the point \((2, 4) \).
 (b) Compute \(\lim_{x \to 2} \frac{g(x) - g(2)}{x - 2} \).

8. Find an equation of the line tangent to the curve \(y = (\frac{x^2 + 1}{x^2 - 1})^2 \) at the point \((2, \frac{25}{9}) \).

9. Suppose \(d(x) = x^4 - 4x^2 + 2 \). Find the absolute maximum and minimum values of \(d(x) \) on \([-3, 1]\).

10. Find the area of the largest rectangle which can be inscribed in the ellipse \(\frac{x^2}{9} + \frac{y^2}{36} = 1 \).

11. Problem number 86 on page 214

12. A ball is thrown vertically upward at time \(t = 0 \) with an initial velocity of 100 ft/sec at an initial height of 84 feet. This gives the ball a height function of \(h(t) = -16t^2 + 100t + 84 \).
 (a) Find the maximum height of the ball.
 (b) Find the velocity of the ball when it hits the ground.