Suppose that $f(x)$ and $g(x)$ are continuous functions on a domain D and c is any real number. Then the following statements are true:

1. $f(x) \pm g(x)$ is continuous on D.
2. $cf(x)$ is continuous on D.
3. $f(x) \cdot g(x)$ is continuous on D.
4. $\frac{f(x)}{g(x)}$ is continuous on D wherever $g(x) \neq 0$.
5. $f(g(x))$ and $g(f(x))$ may be continuous on some domain, depending on the respective ranges of f and g.
Basic Continuous Functions

Here are some functions that we know are always continuous on certain domains see below).

1. Polynomials. These functions are continuous everywhere.
 i. \(x^2 - 2x + 1 \)
 ii. \(-17x^{54} + 300x^{17} - 1011\)

2. Rational Functions. Function of the form \(\frac{p(x)}{q(x)} \), where \(p, q \) are polynomials, these functions are continuous everywhere that \(q(x) \neq 0 \).
 i. \(\frac{x^2 - 2x + 1}{-17x^{54} + 300x^{17} - 1011} \)
 ii. \(\frac{2 - x}{x^2} \)

3. Exponentials and Logarithms.
 i. \(3^x, e^x \): These functions are continuous everywhere.
 ii. \(\ln(x), \log_4(x) \): These functions are continuous for \(x > 0 \).

4. Trig Functions. The functions \(\sin(x), \cos(x), \tan(x), \sec(x), \cot(x), \csc(x) \), these functions are continuous everywhere in their domains.

5. Root Functions. Function of the form \(x^{m/n} \).
 i. \(x^{1/3}, x^{-19/7} \): If \(n \) is odd, then these functions are continuous everywhere (not including at \(x = 0 \) when \(m/n < 0 \)).
 ii. \(x^{3/4}, x^{13/2} \): If \(n \) is even, then these functions are continuous for \(x \geq 0 \) (not including at \(x = 0 \) when \(m/n < 0 \)).

Example: Since \(f(x) = 3^x \), \(g(x) = x^{1/3} = \sqrt[3]{x} \), and \(h(x) = \sin(x) \) are all continuous everywhere, we can say that \(u(x) = 7\sqrt[3]{\sin(3x)} \) is continuous everywhere.