Section 4.2: The Mean Value Theorem
Discussion Date: November 3

Rolle’s Theorem: Suppose that $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). If $f(a) = f(b)$, then $f'(c) = 0$ for some number c in (a, b).

“Proof:”

Mean Value Theorem: Suppose that $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists some number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

“Proof:”
Four Consequences of the Mean Value Theorem:

To begin, suppose that $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b).

1. If $f'(x) = 0$ for every x in (a, b), then $f(x)$ is a constant for every x in $[a, b]$.

2. If $f'(x) = g'(x)$ for every x in (a, b), then $f(x) = g(x) + C$ (with C constant) for every x in $[a, b]$.

3. If $f(x) = 0$ has distinct solutions, say a and b, then $f'(c) = 0$ for some c in (a, b).

4. If $f'(x) > 0$ for every x in (a, b) then f is an increasing function on (a, b). If $f'(x) < 0$ for every x in (a, b) then f is an decreasing function on (a, b).

Definition: The function $f(x)$ is increasing on (a, b) if $f(x_1) < f(x_2)$ for every x_1, x_2 in (a, b) whenever $x_1 < x_2$. The function $f(x)$ is decreasing on (a, b) if $f(x_1) > f(x_2)$ for every x_1, x_2 in (a, b) whenever $x_1 < x_2$.