Improper Integrals Handout

Definition: We say that a definite integral in which \(f(x) \) is the integrand is improper if either (a) \(f \) is discontinuous on the interval of integration or (b) the interval of integration is infinite. If in evaluating an improper integral we get a finite number, we say that the integral converges, and otherwise we say that integral diverges.

Type I Improper Integrals

(a) If \(f \) is continuous on \([a, b)\) but not on \([a, b]\), i.e., \(f \) is discontinuous at \(b \), then

\[
\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx
\]

if this limit exists in finite terms.

(b) If \(f \) is continuous on \((a, b]\) but not on \([a, b]\), i.e., \(f \) is discontinuous at \(a \), then

\[
\int_a^b f(x) \, dx = \lim_{t \to a^+} \int_t^b f(x) \, dx
\]

if this limit exists in finite terms.

(c) If \(f \) is discontinuous at \(x = c \) with \(a < c < b \), then

\[
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx = \lim_{s \to c^-} \int_a^s f(x) \, dx + \lim_{t \to c^+} \int_t^b f(x) \, dx.
\]

Important: Notice that one limit involves \(s \) and the other \(t \). This says that this integral converges if and only if the two separate integrals converge independently of one another.

Type II Improper Integrals

(a) If \(\int_a^N f(x) \, dx \) exists for all numbers \(N \geq a \), then

\[
\int_a^\infty f(x) \, dx = \lim_{N \to \infty} \int_a^N f(x) \, dx.
\]

(b) If \(\int_N^a f(x) \, dx \) exists for all numbers \(N \leq a \), then

\[
\int_{-\infty}^a f(x) \, dx = \lim_{N \to -\infty} \int_N^a f(x) \, dx.
\]

(c) If \(f \) is defined for every real number \(x \), then for any real number \(a \)

\[
\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^a f(x) \, dx + \int_a^{\infty} f(x) \, dx = \lim_{M \to -\infty} \int_M^a f(x) \, dx + \lim_{N \to \infty} \int_M^N f(x) \, dx.
\]

Important: This again says that this integral converges if and only if the two separate integrals converge independently of one another. It does not matter how you choose \(a \) here, and often it is chosen to be 0.