Exam 2 Review Assignment, due Wednesday, April 2nd (30 points)

1. Let \(\mathbf{u} = \langle 6, 2, 3 \rangle \) and \(\mathbf{v} = \langle 2, -3, 1 \rangle \).
 (a) Compute \(4\mathbf{u} - 3\mathbf{v} \).
 (b) Find the length of \(\mathbf{u} \).
 (c) Find a unit vector which points in a direction opposite \(\mathbf{u} \).
 (d) Are \(\mathbf{u} \) and \(\mathbf{v} \) parallel, perpendicular, or neither? If your answer is
 neither, then find the angle between these vectors.
 (e) Find a vector, \(\mathbf{w} \), which is orthogonal to both \(\mathbf{u} \) and \(\mathbf{v} \).

2. Consider the points \(P(2, 5, 5) \) and \(Q(-6, 3, 1) \).
 (a) Find an equation for the line between \(P \) and \(Q \).
 (b) Find an equation of the plane consisting of all points which are
 equidistant from \(P \) and \(Q \).

3. Do Problem 54 in Section 12.3.

4. Consider the sequence \(\{a_n\}_{n \geq 1} \), where \(a_n = n \sin \left(\frac{\pi}{n} \right) \). Does this
 sequence converge to a real number \(L \)? If so, find \(L \).

5. Consider the sequence \(\{b_n\}_{n \geq 1} \), where \(b_n = \left(\frac{n^2 + 3}{n^2} \right)^{-2n^2+7} \). Does
 this sequence converge to a real number \(L \)? If so, find \(L \).

6. Determine whether each of the following series is absolutely convergent, conditionally convergent, or divergent. Make sure to clearly state
 which test you use.
 (a) \(\sum_{n=1}^{\infty} \frac{(n^2 + n + 6)^{7/3}}{(n^3 + 3n^2 + 3n + 1)^{7/4}} \)
 (b) \(\sum_{n=3}^{\infty} \frac{(-1)^n(n - 2) \ln(n)}{n^{3/2}} \)
 (c) \(\sum_{n=1}^{\infty} (n - 1)^2e^{-n} \)
 (d) \(\sum_{n=1}^{\infty} \frac{(-2)^{3n}}{n^n} \)
 (e) \(\sum_{n=1}^{\infty} (-1)^{n+3}2^{1/n^2} \)
 (f) \(\sum_{n=1}^{\infty} \frac{(-1)^{2n+1}n!}{(1)(5)(9)(13) \cdots (4n - 3)} \)
7. Compute the value of the series \(\sum_{n=1}^{\infty} \frac{2^{3n}}{(-3)^{2n+1}} \).

8. With proof, determine whether or not the following series is convergent or divergent.

\[
1 + \frac{1}{2} \left(\frac{19}{7} \right) + \frac{2!}{3^2} \left(\frac{19}{7} \right)^2 + \frac{3!}{4^3} \left(\frac{19}{7} \right)^3 + \frac{4!}{5^4} \left(\frac{19}{7} \right)^4 + \cdots
\]

9. Find the interval of convergence of each of the following series.

(a) \(\sum_{n=1}^{\infty} \frac{(-1)^n n! x^{3n}}{20^n} \)

(b) \(\sum_{n=10}^{\infty} \frac{(-1)^n (2x - 1)^{2n+1}}{n \ln(n) [\ln(\ln(n))] } \)

(c) \(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)! 2^{2n+1}} \)

10. Use a power series to compute the following integral:

\[
\int \frac{e^x - 1}{x} \, dx.
\]

(Note: Your answer will be an infinite sum.)

11. Let \(f(x) = x^{50} - 3x^{30} + x^{10} - 2x^3 + 17 \).

(a) Find the 3rd-degree Taylor polynomial, \(T_3(x) \), for \(f(x) \) at \(a = 1 \).

(b) Find the Maclaurin series of \(f(x) \).

(Hint: Think about this before you do it, although I guess you should do that on every problem.)

12. Evaluate \(\int_{1}^{\infty} \frac{\ln(x)}{x^{5/2}} \, dx \).