HW #10, due November 16th

Chapter 8: 2

Extra Problems for HW #10

Problem 1: Recall that for any \(\alpha \in \mathbb{R} \) and any nonnegative integer \(k \),
\[
\binom{\alpha}{k} = \frac{\alpha(\alpha - 1) \cdots (\alpha - (k - 1))}{k!}.
\]
Show that
\[
(-1)^k \binom{1/2}{k} = \binom{k - 3/2}{k}.
\]

Problem 2: Show that the Catalan numbers, \(C_n \), count the number of elements in each of the following sets. It may be easiest to give a bijection between elements from these sets and elements from a set which we know is counted by the Catalan numbers. Moreover, once you have proved one of following is counted by \(C_n \), you may then use that for future bijections.

(a) Sequences \(a_1 a_2 \cdots a_{2n} \) of \(n \) 1’s and \(n \) -1’s such that the partial sum \(a_1 + a_2 + \cdots + a_k \geq 0 \) for every \(1 \leq k \leq 2n \).

(b) Dyck paths from \((0, 0)\) to \((2n, 0)\) such that the paths never cross the \(x \)-axis.

(c) Binary trees with \(n \) vertices.

(d) Regular \(n \)-gons which have been divided up into \(n - 2 \) triangles, where here, divisions which are oriented differently are counted as distinct.

Problem 3: Define \(SLP_n \) to be the set of all subdiagonal lattice paths from \((0, 0)\) to \((n, n)\) using only moves of \(N \) and \(E \), and let
\[
C_n(q) := \sum_{P \in SLP_n} q^{A(P)},
\]
where \(A(P) \) is the area between the \(x \)-axis and any \(P \in SLP_n \).

(a) Compute \(C_k(q) \) for \(k = 0, 1, 2, 3, 4 \). (Hint: They will all be polynomials in \(q \).)

(b) Show that
\[
C_4(q) = \sum_{k=0}^{3} C_k(q) C_{3-k}(q) q^{(k+1)(3-k)}.
\]

(c) For any nonnegative integer \(n \), what is the value of \(\lim_{q \to 1^+} C_n(q) \)?

Problem 4: Consider the \(n \times n \) matrix \(A_n \), where the entry \(i-j \)th entry of \(A_n \) is \(a_{i,j} = C_{i+j-1} \), the \((i + j - 1)^{th} \) Catalan number. For example,
\[
A_3 = \begin{pmatrix}
1 & 1 & 2 \\
1 & 2 & 5 \\
2 & 5 & 14
\end{pmatrix}.
\]
Find \(det(A_k) \) for \(k = 1, 2, 3, 4, 5 \).
Problem 5: Find the planar binary tree which corresponds to the following sub-diagonal lattice path sequence:

\[EENENEENEENENNN. \]

Problem 6: Compute \(f^\lambda \) for \(\lambda = (6,5^2,3,2^3,1) \).

Problem 7: Consider \((P,Q)\) from the Robinson-Schensted algorithm.

(a) Find \((P,Q)\) corresponding to \(\sigma = (2\ 5\ 1\ 7\ 4\ 3\ 6) \) \(\in S_7 \).

(b) Find the corresponding \(\sigma \in S_7 \) if \((P,Q)\) is given by the pair below.

\[
(P= \begin{array}{ccc}
1 & 3 & 7 \\
2 & 5 \\
4 & 6 \\
\end{array} , \quad Q= \begin{array}{ccc}
1 & 2 & 6 \\
3 & 5 \\
4 & 7 \\
\end{array})
\]