Problem 1. For \(n \geq 0 \), give a combinatorial proof that \(f_{n+2} - 1 = f_0 + f_1 + \cdots + f_{n-1} + f_n \).

Problem 2. Let \(a_n \) denote the ways to color the cells of the \(n \times 1 \) board with the colors red, blue, and green such that no two adjacent cells may be colored red. Assuming \(a_0 = 1 \), find a recurrence relation for \(a_n \) and give justification that your relation is correct.

Problem 3. Find the number of \(n \)-length binary sequences \((x_1, x_2, x_3, \ldots, x_n)\) such that \(x_1 \leq x_2 \geq x_3 \leq \cdots \).

Problem 4. Let \(t_n \) denote the number of ternary strings, i.e., strings comprised of the numbers 0, 1, and 2, of length \(n \) which do not end with 00, 01, 11, or 10. Assuming \(t_0 = 1 \), find a recurrence relation for \(t_n \) and give justification that your relation is correct.

Bonus Problem 1. Let \(a_n \) denote the ways to color the cells of the \(n \times 1 \) board with the colors red, blue, and green such that the number of red cells is even and there must be at least one blue cell. Find a recurrence relation for \(a_n \) and give justification that your relation is correct.

Bonus Problem 2. Give a combinatorial proof of the following identity:

\[
f_{2n+1} = \sum_{i \geq 0} \sum_{j \geq 0} \binom{n-i}{j} \binom{n-j}{i},
\]