The example given is class was to find a basis for the row and column spaces of the matrix

\[
A = \begin{pmatrix}
1 & 1 & 1 & 1 & 12 \\
1 & 2 & 0 & 5 & 17 \\
3 & 2 & 4 & -1 & 31
\end{pmatrix}.
\]

We then can row reduce this matrix to the matrix

\[
E = \begin{pmatrix}
1 & 1 & 1 & 1 & 12 \\
0 & 1 & -1 & 4 & 5 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

Now we have that a basis for \(\text{Row}(A) \) is \(\{(1, 1, 1, 1, 12), (0, 1, -1, 4, 5)\} \) since those are the nonzero rows of \(E \) (these were given correctly in class). However, the basis I gave for the column space of \(A \), namely \(\{(1, 0, 0), (1, 1, 0)\} \), is not correct. Rather, the two columns we choose in \(E \) are columns 1 and 2 since they contain the leading ones, but this means that the basis for \(\text{Col}(A) \) will be the first two columns back in the original matrix \(A \). Thus a basis for \(\text{Col}(A) \) is \(\{(1, 1, 3), (1, 2, 2)\} \).

Sorry about the mix-up.

- Brian

Note: In the first section I gave a second example of a matrix \(E \) and gave the basis for that column space incorrectly there as well. For that example, we would need to know the original matrix \(A \) to find the correct basis.