Problem 53:

Let \(f : X \to Y \) be a function and suppose that the functions \(g : Y \to X \) and \(h : Y \to X \) are both inverses for \(f \), i.e. that \(f \circ g = f \circ h = I_Y \) and \(g \circ f = h \circ f = I_X \). Prove that \(g = h \).

Problem 54:

Let \(f : X \to Y \) and \(g : Y \to Z \) be functions.

a. Prove that if \(f \) and \(g \) are both injective then so is \(g \circ f \).

b. Prove that if \(f \) and \(g \) are both surjective then so is \(g \circ f \).

c. If \(g \circ f \) is injective do either of \(f \) or \(g \) have to be injective? Prove your answer.

d. If \(g \circ f \) is surjective do either of \(f \) or \(g \) have to be surjective? Prove your answer.

Problem 55:

Prove that the function \(f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \) defined by \(f(x) = x/(x-2) \) is not a bijection. Find a set \(Y \subset \mathbb{R} \) so that the function \(\hat{f} : \mathbb{R} \setminus \{2\} \to Y \) given by the same formula is a bijection, and find \(\hat{f}^{-1} \).