Problem 4. Let $m, n \in \mathbb{N}$, and suppose X is a set with exactly m elements and Y is a set with exactly n elements. If $f : X \to Y$ is an injection, which of the following may be true?

a. $n > m$.

b. $n = m$.

c. $n < m$.

d. There is no way to tell.

Problem 5. Let $m, n \in \mathbb{N}$, and suppose X is a set with exactly m elements and Y is a set with exactly n elements. If $f : X \to Y$ is a surjection, which of the following may be true?

a. $n > m$.

b. $n = m$.

c. $n < m$.

d. There is no way to tell.

Problem 6. For any sets A and B, let A/B denote the set $A - B$. Prove that the function $f : \mathbb{R}/\{2\} \to \mathbb{R}$ defined by $f(x) = x/(x - 2)$ is not a bijection. Find a set $Y \subseteq \mathbb{R}$ so that the function $g : \mathbb{R}/\{2\} \to Y$ given by the same formula is a bijection, and find g^{-1}.