Problem 24. Suppose that $X \subseteq \mathbb{Z}$ with X nonempty. Show that if X is bounded below, then X has a least element.

*Hint: Since X is bounded below, there exists $M \in \mathbb{Z}$ such that $x \geq M$ for every $x \in X$. Now consider the function $f : X \rightarrow \mathbb{N}$ by $x \mapsto x - M + 1$. (You may begin the proof with these two sentences, if you like.) Now use the WOP to show that $f(X) = \{ f(x) \mid x \in X \}$ has a least element. Also notice that f is injective. These two facts should make it so that you can find the least element of X."

Problem 25. Define $B(S)$ to denote the set of all bijections from s to itself. Show that $L = \{ g \in B(\mathbb{R}) \mid g(x) = ax + b \text{ with } a \in \mathbb{Q}^*, b \in \mathbb{Q} \}$ is a subgroup of $(B(\mathbb{R}), \circ)$. Show that if \mathbb{Q}^* is replaced with \mathbb{Z}, then this is not a group. (*Hint: Be aware of the operation here when you talk about “xy”.*)

Problem 26. Suppose that H and K are subgroups of G. Show that $H \cap K$ is a subgroup of G.\"