Exam II Review Problems

Review Problem 1: Give definitions for the following terms: function, injective, surjective, bijective, binary operation, group, Abelian, identity, inverse, cyclic group. State the Division Algorithm. State the Well-Ordering Principle.

Review Problem 2: Given a function \(f : X \to Y \), for \(Z \subseteq X \) we define the set \(f(Z) = \{ f(z) | z \in Z \} \subseteq Y \). Consider \(A, B \subseteq X \).

a. Show that \(f(A \cup B) = f(A) \cup f(B) \).

b. Show that \(f(A \cap B) \subseteq f(A) \cap f(B) \).

c. Find an example where \(f(A \cap B) \neq f(A) \cap f(B) \).

Review Problem 3: Let \(X \) and \(Y \) be sets. Prove the following statements.

a. The function \(f : X \to Y \) is an injection if and only if there exists a function \(g : Y \to X \) so that \(g \circ f = Id_X \). \(g \) is called a left inverse.

b. The function \(f : X \to Y \) is a surjection if and only if there exists a function \(g : Y \to X \) so that \(f \circ g = Id_Y \). \(g \) is called a right inverse.

Review Problem 4: Consider the function \(h : X \to Y \) defined by \(h(x) = x^2 - 2x \).

a. Show that if \(X = Y = \mathbb{R} \), then \(h \) is neither injective nor surjective.

b. Find (with proof) \(X, Y \subseteq \mathbb{R} \) such that \(h \) is surjective but not injective. Can you find the “largest” \(Y \)?

c. Find (with proof) \(X, Y \subseteq \mathbb{R} \) so that \(h \) is bijective. Can you find the “largest” \(X, Y \)?

Review Problem 5: Let \(n \in \mathbb{N} \) and suppose \(X \) is a set with \(n \) elements. Find, with proof, the number of bijections from \(X \) to itself.

Review Problem 6: Suppose \(X, Y \) are sets and let \(B(X, Y) \) denote the set of all bijections from \(X \) to \(Y \). Show that \((B(\mathbb{R}, \mathbb{R}), \circ) \) is a group. Determine whether or not \((B(\mathbb{Z}, \mathbb{Z}), \circ) \) is a group. What about \((B(\mathbb{R}, \mathbb{Z}), \circ) \)?

Review Problem 7: Fix \(a, b \in \mathbb{N} \). Show that \(H_{a,b} = \{ am + bn \mid m, n \in \mathbb{Z} \} \) is a subgroup of \((\mathbb{Z}, +)\).
Review Problem 8: Let G be a group and suppose that $a \in G$ such that $|a| = n$. Show that $a^i = a^j$ if and only if $n|(i - j)$.

Review Problem 9: Suppose G is a group and $a, b \in G$. Show that if $|ab| = n$, then $|ba| = n$.

Review Problem 10: Is $U(18)$ cyclic? If so, find all of its generators.

Review Problem 11: Suppose $n > 1$. What is the order of the element $2^n - 1$ in the group $U(2^n)$?

Review Problem 12: For groups $(G, \ast_G), (H, \ast_H)$, define $G \oplus H = \{(g, h) \mid g \in G \text{ and } h \in H\}$. Show that $(G \oplus H, \cdot)$ is a group if we define $(g, h) \cdot (g', h') = (g \ast_G g', h \ast_H h')$.

Review Problem 13: Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is cyclic but $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not.

Review Problem 15: Determine all subgroups of the group $G = (\mathbb{Z}, +)$.

Review Problem 16: Let G be a group and suppose $H \leq G$. Define

$$C(H) = \{x \in G \mid xh = hx \forall h \in H\}.$$

Show that $C(H) \leq G$.

Review Problem 17: Suppose that G, H, K are groups such that $G \approx H$ and $H \approx K$. Prove that $G \approx K$.