Final Exam Review Problems

Review Problem 0: Review class notes and homework assignments. You should know which canonical sets are countable/uncountable, as well as what set operations preserve countability.

Review Problem 1: Give definitions for the following terms: countable, uncountable, bounded above, bounded below, supremum, infimum. You should also know the working definitions of any terms, when applicable.

Review Problem 2: State the Axiom of Completeness for \mathbb{R}. Show that the Axiom of Completeness holds for \mathbb{Z}, but that it does not hold for \mathbb{Q}.

Review Problem 3: State the Archimedean Property.

Review Problem 4: Find the $\sup(A)$, where $A = \{\frac{2n+1}{n+1} \mid n \in \mathbb{N}\}$, or state why it does not exist. Do the same for $\inf(A)$.

Review Problem 5: Find the $\sup(A)$, where $A = \{\frac{1}{n} - \frac{1}{m} \mid m, n \in \mathbb{N}\}$, or state why it does not exist.

Review Problem 6: Show that the set of irrational numbers is uncountable.

Review Problem 7: Show by example that if X_1, X_2, X_3, \ldots are countable sets, that the product of these sets, $\prod_{i=1}^{\infty} X_i = X_1 \times X_2 \times X_3 \times \cdots$, need not be.

Review Problem 8: For a positive integer n, let $B(n)$ be the set of subsets of \mathbb{N} having exactly n elements. Show that for all $n \geq 1$, $B(n)$ is countable.

Review Problem 9: Show that the union of a countable set and an uncountable set is uncountable.

Review Problem 10: Let A, B be nonempty subsets of \mathbb{R} such that for all $x \in A$ and $y \in B$, we have that $x \leq y$. Show that $\sup A \leq \inf B$. Furthermore, show that $\sup A = \inf B$ if and only if for all $\epsilon > 0$, we may find $x \in A$ and $y \in B$ such that $y - x < \epsilon$.