Problem 39. Pick \(k \in \mathbb{N} \) and define \(M_k = \{(x, y) \mid k|(x - y)\} \subseteq \mathbb{Z}^2 \). Show that \(M_k \) is an equivalence relation on \(\mathbb{Z} \) and describe \([6]\) on the set \(M_4 \). Is this the same as the set \([6]\) on \(M_5 \)? Explain. This equivalence is called congruence modulo \(k \).

Problem 40. For \(x, y \in \mathbb{R} \), define \(\sim \) by \(x \sim y \) whenever there exists \(r \in \mathbb{R} \) with \(r \neq 0 \) such that \(x = yr^2 \). For any \(a \in \mathbb{R} \), describe \([a]\).

Problem 41. If \(A = \{1, 2, 3, \ldots, 9, 10\} \) and \(S = \{\{1, 3, 5\}, \{2, 8\}, \{4, 6, 9, 10\}, \{7\}\} \), find an equivalence relation on \(A \) whose set of equivalence classes is exactly \(S \).