Homework 7
Due Date: January 31

Problem 14. Prove that for \(n \in \mathbb{Z} \), if \(n^2 \) is even then so is \(n \).

Problem 15. For \(a, b, c \in \mathbb{Z} \), show that if \(a \mid b \) and \(a \mid c \), then \(a \mid (bx + cy) \) for any \(x, y \in \mathbb{Z} \).

Problem 16. Prove that the previous statement is not an if and only if statement.

Problem 17. Let \(a, b, c \in \mathbb{Z} \). Show that if \(a \mid b \) and \(b \mid c \), then \(a \mid c \).