Homework 11 Due in class on April 21

We define that a set X is finite if $X = \emptyset$ or for some $n \in \mathbb{N}$, there exists a bijection f between X and $\mathbb{I}_n := \{1, 2, ..., n\}$. We then define that X is infinite if X is not finite. We further define that X is countable if X is finite or if there exists a bijection φ between X and \mathbb{N} , and we define that X is uncountable if X is not countable. Finally, we say that the cardinality of X, denoted $\operatorname{card}(X)$, is some "measure" of the size of X; in particular, for a finite set X, we set $\operatorname{card}(X) = |X|$. We say that given two sets A and B, $\operatorname{card}(A) = \operatorname{card}(B)$ if there exists a bijection between A and B. With this definition, we see that it is possible that two infinite sets may not have the same cardinality.

Problem 1. Prove that if A is a set such that $|A| = n \in \mathbb{N}$, then the number of bijections from A to itself is n!. Recall that 0! = 1, and for $n \in \mathbb{N}$, $n! = n(n-1)(n-2)\cdots(2)(1)$.

Problem 2. Below is a list of 10 ten-digit numbers made up of only 2's and 4's. Some digits are visible to you, while others are not. Find a ten-digit number made of only 2's and 4's that is not on the list, and give a **clear** explanation as to why your answer is not on the list.

 $n_1 = x$ x

Problem 3. Suppose $f: X \to Y$ is an injection and X is infinite. Prove that Y is infinite.

Problem 4. Consider the relation $\sim = \{(A, B) \mid \operatorname{card}(A) = \operatorname{card}(B)\} \subseteq \mathcal{P}(\mathbb{R})^2$, where $\mathcal{P}(\mathbb{R})$ is the power set of the real numbers. Prove or disprove that \sim is an equivalence relation.

Problem 5. For this problem $(u, v) = \{x \in \mathbb{R} \mid u < x < v\}$, that is, (u, v) is the continuous, real interval from u to v, including neither u nor v.

- i. Show that for any $a, b \in \mathbb{R}$ with a < b, card((0, 1)) = card((a, b)).
- ii. Prove that $f:(-1,1)\to\mathbb{R}$ by $x\mapsto\frac{x}{1-x^2}$ is a bijection. (Note that these two problems show that $\operatorname{card}((0,1))=\operatorname{card}(\mathbb{R})$.)

Problem 6. Let X be an infinite set. Prove that the following three statements are equivalent.

- i. X is a countable set.
- ii. There exists a surjection $f: \mathbb{N} \to X$.
- iii. There exists an injection $g: X \to \mathbb{N}$.