RSA Cryptosystems

A public-key cryptosystem works on the basis of making public two pieces of information, n and k, such that the sender (A) and receiver (B) of information know something extra about the number n. In particular, n is usually chosen to be equal to the product of two (massive and distinct) prime numbers, p and q, known by A and B but NOT known to the public. In general, p and q are extremely difficult to find, and this is where the security of the system arises. Now,

$$\phi(n) = \phi(pq) = \phi(p)\phi(q) = (p-1)(q-1).$$

We then choose k such that $(k, \phi(n)) = 1$. Then B finds $j < n$ such that

$$kj \equiv 1 \mod \phi(n).$$

It is then the case that using the n, k, and j defined here,

$$a^k \equiv r \mod n \iff r^j \equiv a \mod n. \quad (1)$$

Using the legend presented in class (also on web page), where “99” corresponds to a space, let’s say A wishes to encode the following message: “MATH IS FUN”

We will let M denote the character representation of A’s message, that is,

$$M = 12001907990818052013.$$

So, A will pick two primes numbers, say $p = 127$ and $q = 8191$, and then $n = pq = 1040257$. Now $\phi(n) = (p-1)(q-1) = 1031940$, and A can pick $k = 10007$ because then $(10007, 1031940) = 1$. Now, A breaks up M into blocks of code, that is $M = M_1M_2M_3M_4$ where

$$M_1 = 12001,$$
$$M_2 = 90799,$$
$$M_3 = 08180,$$
$$M_4 = 52013,$$

and A raises each of the M_i to the k and takes the result modulo n.

$$M_1^k \equiv 609084 \mod n$$
$$M_2^k \equiv 204679 \mod n$$
$$M_3^k \equiv 710714 \mod n$$
$$M_4^k \equiv 610958 \mod n$$
A then writes a new number \(r \), which is the concatenation of those numbers just found, where each is made to have the same length as \(n \) by adding zeros to the front, that is,

\[
r = 0609084|0204679|0710714|0610958,
\]

where the bars denote the four different blocks. This number is then sent to B as the encoded information.

B receives the number \(r \) and needs to undo the encoding to recover the message \(M \). To do this they will use (1) from above. The first step is to find \(j \) such that \(kj \equiv 1 \mod \phi(n) \), and they obtain that \(j = 165923 \). Now B breaks up \(r = r_1r_2r_3r_4 \) into blocks of length \(n \), and applies (1) to recover the blocks of \(M \).

\[
\begin{align*}
 r_1^j &\equiv 12001 \mod n \\
 r_2^j &\equiv 90799 \mod n \\
 r_3^j &\equiv 8180 \mod n \\
 r_4^j &\equiv 52013 \mod n
\end{align*}
\]

Once they know that the original blocks were size 5 in length, B can then recreate

\[
M = 12001|90799|08180|52013,
\]

which reads as “MATH IS FUN”.