Problem 1. (From the book.) Do the following problems:
Chapter 6 Problem Set, pages 48–49: 5-8, 12, 15

Problem 2. Let \(d, n \in \mathbb{N} \) such that \(d \mid n \). Show that for \(a \in \mathbb{N} \), \((a^d - 1)(a^n - 1) \).
(Hint: Notice that for \(k \in \mathbb{N} \), \(x^k - 1 = (x - 1)p(x) \) for some function \(p(x) \). What is \(p(x) \)?)

Problem 3. Compute the value of \(2222^{5555} + 5555^{2222} \pmod{7} \).

Problem 4. Recall that a composite number \(n \) is an absolute pseudoprime if \(n \mid a^n - a \) for every \(a \in \mathbb{Z} \) such that \((a, n) = 1 \).
 i. Prove or disprove that \(n = 2465 \) is an absolute pseudoprime.
 ii. Show that if \(n = (6k + 1)(12k + 1)(18k + 1) \) for some \(k \in \mathbb{N} \) such that all three factors are prime, then \(n \) is an absolute pseudoprime.
 iii. Use the previous part to find the smallest absolute pseudoprime of this form.

Problem 5. Let \(p, q \) be distinct primes and suppose \(a \in \mathbb{Z} \) so that \(a^p \equiv a \pmod{q} \) and \(a^q \equiv a \pmod{p} \). Prove that \(a^{pq} \equiv a \pmod{pq} \).