Problem 1: Evaluate \[\int_0^a \int_0^b e^{\max\{b^2x^2, a^2y^2\}} \, dy \, dx, \] where \(a \) and \(b \) are positive.

Problem 2: Evaluate \[\int_0^{\pi/2} \frac{dx}{1 + (\tan x)^{\sqrt{2}}}. \]

Problem 3: Evaluate \[\int_0^{2\pi} \frac{dx}{1 + e^{\sin(x)}}. \]

Problem 4: Let \(p(x) = 2 + 4x + 3x^2 + 5x^3 + 3x^4 + 4x^5 + 2x^6 \). For \(k \) with \(0 < k < 5 \), define
\[I_k = \int_0^\infty \frac{x^k}{p(x)} \, dx. \]
For which \(k \) is \(I_k \) smallest?

Problem 5: For each continuous function \(f : [0,1] \to \mathbb{R} \), let
\[I(f) := \int_0^1 x^2 f(x) \, dx \quad \text{and} \quad J(f) := \int_0^1 x(f(x))^2 \, dx. \]
Find the maximum value of \(I(f) - J(f) \) over all such functions \(f \).