Math 1190 Quiz #12

Problem 1: Prove that from a set of 10 distinct two-digit numbers, it is possible to select two disjoint subsets whose members have the same sum.

Problem 2: Let \(x_1, x_2, x_3, \ldots \) be a sequence of nonzero real numbers satisfying
\[
x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2} - x_{n-1}} \quad \text{for } n = 3, 4, 5, \ldots.
\]
Establish necessary and sufficient conditions on \(x_1 \) and \(x_2 \) for \(x_n \) to be an integer for infinitely many values of \(n \).

Problem 3: For any positive integer \(n \), let \(\langle n \rangle \) denote the closest integer to \(\sqrt{n} \). Evaluate
\[
\sum_{n=1}^{\infty} \frac{2^{\langle n \rangle} - 2^{-\langle n \rangle}}{2^n}.
\]
Problem 1: Prove that from a set of 10 distinct two-digit numbers, it is possible to select two disjoint subsets whose members have the same sum.
Problem 2: Let x_1, x_2, x_3, \ldots be a sequence of nonzero real numbers satisfying

$$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2} - x_{n-1}} \quad \text{for } n = 3, 4, 5, \ldots$$

Establish necessary and sufficient conditions on x_1 and x_2 for x_n to be an integer for infinitely many values of n.
Problem 3: For any positive integer \(n \), let \((n)\) denote the closest integer to \(\sqrt{n} \). Evaluate

\[
\sum_{n=1}^{\infty} \frac{2^{(n)} - 2^{-(n)}}{2^n}.
\]