Math 1190 Quiz #9

Problem 1: Find the maximum value of the function \(f(x, y, z) = 2x + 6y + 10z \) given that \(x^2 + y^2 + z^2 = 35 \).

Problem 2: For \(x > 0 \), find the minimum value of the expression
\[
\frac{(x + 1/x)^6 - (x^6 + 1/x^6) - 2}{(x + 1/x)^3 + (x^3 + 1/x^3)}.
\]

Problem 3: Find all real-valued functions \(f \) on the real line such that for all \(x \)
\[
[f(x)]^2 = \int_0^x \{[f(t)]^2 + [f'(t)]^2\} \, dt + 2009.
\]
Problem 1: Find the maximum value of the function \(f(x, y, z) = 2x + 6y + 10z \) given that \(x^2 + y^2 + z^2 = 35 \).
Problem 2: For $x > 0$, find the minimum value of the expression
\[
\frac{(x + 1/x)^6 - (x^6 + 1/x^6) - 2}{(x + 1/x)^3 + (x^3 + 1/x^3)}.
\]
Problem 3: Find all real-valued functions f on the real line such that for all x

$$[f(x)]^2 = \int_0^x \{(f(t))^2 + (f'(t))^2\} \, dt + 2009.$$