
A Nearly Exact Discretization Scheme for the FitzHugh-Nagumo

Model

Eddy Kwessi∗ and Lloyd J. Edwards†

Abstract

In this paper, we apply the nearly exact discretization schemes to propose a discrete
model for the FitzHugh Nagumo model. We show that the discrete model obtained preserves
the dynamics and the known features of the continuous FitzHugh-Nagumo model. We do
so by performing distance-based and probability-based similarity analysis. Additionally,
a sensitivity analysis is also performed to analyze the most influential parameters of the
discrete system.
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1 Introduction

Hodgkin [7] famously were able to use voltage clamping and pharmacology agents to model the
ionic conductances that generate the action potential of nerve fibers, see [2]. They proposed a
model based on four coupled equations linking the following variables: the membrane potential,
the sodium activation current, the sodium inactivation current, and the potassium activation
current. The continuous FitzHugh-Nagumo (CFHN) model was independently obtained in [3]
and in [17] from the Hodgkin-Huxley (HH) model by considering fast and slow variables and
slaving the others. Indeed, the model is justified by the observation that both the membrane
potential and the sodium activation current evolve on a similar time scale during an action
potential whereas the sodium inactivation current and the potassium activation current change
on a much slower time scale. The two coupled variables of the CFHN model are x, called the
membrane potential whose role is to reproduce the behavior of the voltage during the course
of a spike and y, called the recovery variable whose role is to inhibit the production of x (slow
negative feedback), see for instance [10]. There are many variants of the CFHN model, but in
this paper we will adopt the model given asε

dx
dt = x− x3

3 − y + I

dy
dt = x+ a− γy

, (1.1)

where a is the excitability parameter of the system in the sense that it determines if the system
is excitable or not (that is, it exhibits periodic firing and thus autonomous oscillations), γ is a
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parameter playing similar role as a and represents an excitation threshold, ε is a positive scaling
parameter determining how fast x changes relatively to y, and I is the intensity of the injected
current and is a constant of time t. We note that with the change of variable u = x + a and
v = ε−1y, the system (1.2) model is equivalent to the more abstract form (see [10]) given as

du
dt = h(u)− v + I0

dv
dt = c1(u− c2v)

, (1.2)

where c1 = ε−1, c2 = γε, I0 = ε−1I and h(u) is a third degree polynomial in u. The CFHN
model is useful not only to model interaction between neural networks, but also to understand
the structure of nerve axons in vertebrates [2].

The literature on the dynamics of the system of ordinary differential equations (1.2) is
rather large. Discrete versions of this model have been proposed for various reasons: Hupkes
and Sandstede [9] considered a discrete FHN model and showed that it possesses traveling pulses.
Elmer and Van Vleck [2] discussed a spatially discrete FHN model and compared its dynamics
to the dynamics generated by spatially continuous and discrete models of action potential
propagation. Jing et al. [11] have proposed a discrete version of the CFHN model using the
Euler discretization method and showed that the system they obtained has a chaotic behavior:
invariant cycle, period doubling bifurcations, and other properties. Other recent references
about the FHN worth looking into and that provide additional details include [4, 12, 13, 19]
and the references therein.

Discrete models obtained from continuous models should have at least some of the fol-
lowing properties: preserve the dynamics of the original continuous model, be mathematically
tractable, be well-posed, and be practical for parameter estimation. Our contribution in this
paper is to propose a discrete Fitzhugh-Nagumo (DFHN) model, based on a nearly exact dis-
cretization scheme (NEDS)[14]. We show that the resulting model preserves qualitatively and
quantitatively the features of the continuous model such as its dynamics and known phenomena.
The remainder of the paper is organized as follows: in Section 2, we provide a brief overview
of the NEDS method. In Section 3, we present the FHN model and in Section 4, we establish
dynamics and stability of the DFHN model. In Section 5, we present simulations addressing
equibria and the preservation of known phenomena to the CFHN model and Section 6 provides
a deeper examination of the DFHN model. Lastly, in Section 7, we discuss some concluding
remarks.

2 Review of the NEDS Method

We note that the NEDS is one of the many iterations of the methods proposed in [15, 16] that
applies to the case where the right hand side of an ordinary differential equation (ODE) has a
specific form. Let x be a function of t. The ODE notation of x is x(t) whereas the difference
equation (DE) notation for x is xt. Consider the following:

dx

dt
= f(x(t)), (2.1)

where f(x) is a real-valued function of x.

Definition 1. A discretization scheme will be called dynamically consistent if the following
hold:

A1: The stability of the ODE and DE are the same.
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A2: The bifurcation of the ODE and DE are the same.

A3: If two ODEs are equivalent through re-parametrization, then the resulting DEs must be
equivalent through the same re-parametrization.

Definition 2. A real-valued function f is said to be T1 if f(x) = ωx + g(x)x + c and is T2 if
f(x) = ωx− g(x)x+ c, where ω is a nonzero real constant, g(x) a real-valued function that has
no linear term, and c is a constant function of x.

A NEDS of the ODE in (2.1) can be obtained using the following principles:

P1: The derivative
dx

dt
can be discretized as

xt+1 − xt
φ(τ)

, (2.2)

where φ depends on a step size τ and other parameters, and is given as

φ(τ) = τ + O(τ2) as τ → 0+.

P2: Suppose f is either T1 or T2. We define

φ(τ) =
eωτ − 1

ω
.

Thus

xt+1 − xt
φ(τ)

=


ωxt + g(xt)xt + c , if f is T1

ωxt − g(xt)xt+1 + c , if f is T2

.

In this case the resulting DE is

xt+1 = f0(xt) =


eωτxt + φ(τ)[g(xt)xt + c], if f is T1

eωτxt+φ(τ)c
1+φ(τ)g(xt)

, if f is T2

. (2.3)

This NEDS has been used successfully to obtain dynamically consistent DE models from various
types of nonlinear model ODEs that cannot be linearized, see for instance [14] and [6] .

3 NEDS for the FitzHugh-Nagumo Model

Now let us rewrite the CFHN model (1.2) above as:
dx

dt
= ε−1x− ε−1x

3

3
− ε−1y + ε−1I

dy

dt
= x+ a− γy

. (3.1)

Let

φ1(τ) =
eε
−1τ − 1

ε−1
and φ2(τ) =

1− e−γτ

γ
.
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Letting g1(x) = ε−1
x2

3
and g2(y) = 0, we observe that (3.1) can be written in the form

dx

dt
= ε−1x− g1(x)x+ ε−1(I − y)

dy

dt
= −γy + g2(y)y + x+ a

. (3.2)

Using φ1(τ) to discretize the first equation and φ2(τ) to discretize the second equation in (3.2),
the NEDS method as suggested above yields the following:

xt+1 = f0(xt, yt, ε, τ, I) =
eε
−1τxt + (1− eε−1τ )(yt − I)

1 +
eε
−1τ − 1

3
x2t

yt+1 = h0(xt, yt, γ, τ, a) = e−γτyt + γ−1(1− e−γτ )(xt + a)

. (3.3)

For simplification purposes, we may sometimes use the re-parametrization

α = eε
−1τ , β = e−γτ , and θ = γ−1 ,

so that (3.3) may we written as
xt+1 = f(xt, yt, α, I) =

αxt + (1− α)(yt − I)

1 +
α− 1

3
x2t

yt+1 = h(xt, yt, β, θ, a) = βyt + θ(1− β)(xt + a)

. (3.4)

In the next sections, we show that the dynamics of the discrete FHN is nearly identical to the
dynamics of the continuous one. Henceforth, CFHN will denote either equations (1.2), (3.1), or
(3.2) whereas DFHN will denote either (3.3) or (3.4). We start by comparing the times series
of CFHN and that of the DFHN.

4 Dynamics of the DFHN model

4.1 Fixed points

The fixed points of the DFHN model are solutions of the equations xt+1 = xt and yt+1 = xt.
Therefore

xt+1 = xt ⇐⇒ αxt + (1− α)(yt − I) = xt +
α− 1

3
x3t .

Thus,

yt = xt −
x3t
3

+ I. (4.1)

Likewise,

yt+1 = xt ⇐⇒ yt = βyt + θ(1− β)(xt + a) .

Thus,
yt = θ(xt + a). (4.2)

We note that equations (4.1) and (4.2) represent respectively the nullclines (or isoclines) of x

and y in the CFHN model, that is, where the velocities
dx

dt
= 0 and

dy

dt
= 0. Therefore, we

conclude that the continuous and discrete models have the same nullclines or same fixed points.
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Dropping the reference to t and combining equations (4.1) and (4.2), we obtain:

x3 + px+ q = 0, (4.3)

where p = −3

(
1− 1

γ

)
and q = −3

(
I − a

γ

)
. The discriminant of equation (4.3) is given as

∆ = ∆(a, γ, I) = 27

[
4

(
1− 1

γ

)3

− 9

(
I − a

γ

)2
]
.

We know that:

(a) If ∆ < 0, then there is one real root and two complex conjugate roots with nonzero
imaginary parts.

(b) If ∆ = 0, then there is one real root and one root of multiplicity 2.

(c) If ∆ > 0, then there are three distinct real roots.

4.2 Stability Analysis

To discuss stability analysis of a two-dimensional discrete system, we recall the following result,
Theorem 4.11 in [1].

Theorem 3. Let F : G ⊂ R2 → R2 be a continuously differentiable map, where G is an open
set of R2. Let X be a fixed point of F , and let A = JF (X), where JF (X) is the Jacobian of
F evaluated at X. Let σ(A) = max{|λ1| , |λ2|} be the spectral radius of A, where λi, i = 1, 2 is
an eigen value of A. Then the following statements hold true:

• If σ(A) < 1, then X is asymptotically stable.

• If σ(A) > 1, then X is unstable.

• If σ(A) = 1, then X may or may not be stable.

Remark 4. We observe that if A is 2× 2 matrix, then σ(A) < 1 if and only if |tr(A)| − 1 <
det(A) < 1. This is the so-called Trace-Determinant Theorem, see [1].

Consider the two dimensional map F : R2 → R2 defined as

F (x, y) =


f(x, y) =

αx+ (1− α)(y − I)

1 +
α− 1

3
x2

g(x, y) = θ(1− β)(x+ a) + βy

.

Clearly, F is continuously differentiable on R2. Let X = (x, y) be a fixed point of the DFHN.
The Jacobian A = JF (X) of F is given as

JF (X) =


3α+ (α− 1)x3 − 2(α− 1)x[αx+ (1− α)(y − I)]

3

(
1 +

α− 1

3
x2
)2

(1− α)

1 +
α− 1

3
x2

θ(1− β) β

 .
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Replacing y in the Jacobian with θ(x+ a), and simplifying, we have

JF (X) =

 L

3K2

(1− α)

K

θ(1− β) β

 ,

where

L = L(x) = (α− 1)µ1x
2 + µ2x+ 3α and K = K(x) := 1 +

α− 1

3
x2 ,

with µ1 = 2θ−α(1 + θ) and µ2 = 2(α− 1)2(θa− I). Consider the following quantities that will
be crucial for stability analysis:

T = tr(A) = β +
L

3K2
; D = det(A) =

βL

3K2
+
λ

K
.

λ = θ(1− β)(α− 1)

From Remark 4, D < 1 if P0(K) = 3K2 − 3λK − βL > 0 for all K. We observe that
α > 1 so that K > 0 for all x ∈ R. P0(K) is a second degree polynomial in K with positive
leading coefficient, therefore it is positive for all K if (A1,β) : ∆β = 9λ2 + 12βL < 0 and

(A2,β) : P0(C0) = −3

4
λ2 − βL > 0.

(A2,β) suggests that the critical point C0 = 1
2λ is such that P0(C0) = −3

4
λ2−βL > 0, otherwise,

there will be values of K for which P0(K) < 0.
Let us examine (A1,β).

∆β < 0⇐⇒ P1(x) = 12β(α− 1)µ1x
2 + 12βµ2x+ 36αβ + 9λ2 < 0. Let C1,β =

−µ2β
2β(α− 1)µ1

be

the critical point of P1(x) . Then (A1,β) is possible for all x if

(A1,1,β) :


µ1 < 0,

∆1,β = 144β2µ22 − 48µ1β(α− 1)[36αβ + 9λ2] < 0

P1(C1,β) < 0

,

or for some x if

(A1,2,β) :


µ1 > 0,

∆1,β = 144β2µ22 − 48µ1β(α− 1)[36αβ + 9λ2] > 0

P1(C1,β) < 0

.

We observe that µ1 < 0 makes ∆1,β > 0 in (A1,1,β), therefore only (A1,2,β) is possible.
Let us examine (A2,β).

P0(C0) > 0⇐⇒ P2(x) = −β(α− 1)µ1x
2 − µ2βx−

[
3αβ +

3

4
λ2
]
> 0. C2,β is the critical point

of P2(x) given by C2,β = C1,β. The inequality is only possible for all x if

(A2,1,β) :


µ1 > 0

∆2,β = β2µ22 − 4β(α− 1)µ1

[
3αβ +

3

4
λ2
]
< 0

P2(C2,β) < 0

,
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or for some x if

(A2,2,β) :


µ1 < 0

∆2,β = β2µ22 − 4β(α− 1)µ1

[
3αβ +

3

4
λ2
]
> 0

P2(C2,β) < 0

.

Only (A2,1,β) overlaps with (A1,2,β), so in conclusion, D < 1 if the following conditions (which
depend only on the parameters α, β, θ, a, and I) are true:

P1(β) = P1(α, β, θ, a, I) :


µ1 > 0

∆1,β > 0, ∆2,β < 0

P1(C1,β) < 0, P2(C1,β) < 0

.

Now, we discuss the conditions for |T | − 1 < D.
Case 1: L > 0
Then |T | − 1 − D < 0 ⇐⇒ P00(K) = 3(1 − β)K2 + 3λK − (1 − β)L > 0 for all K. As with
P0(K), P00(K) is a second degree polynomial in K with positive leading coefficient, therefore,

it is positive if (A1,(1−β)2) : ∆(1−β)2 = 9λ2 + 12(1− β)2L < 0 and (A2,(1−β)2) : − 3

4(1− β)
λ2 −

(1 − β)L > 0. We observe that when L > 0, then ∆(1−β)2 > 0 therefore (A1,(1−β)2) is not
possible.
Case 2: L < 0
Then |T | − 1 −D < 0 ⇐⇒ P000(K) = 3(1 + β)K2 + 3λK − (1 + β)L > 0 for all K. As with
P0(K), P000(K) is a second degree polynomial in K with positive leading coefficient, therefore,

it is positive if (A1,(1+β)2) : ∆(1+β)2 = 9λ2 + 12(1 + β)2L < 0 and (A2,(1+β)) : − 3

4(1 + β)
λ2−

(1+β)L > 0. As above, we note that (A1,(1+β)2) is satisfied only if (A1,2,(1+β)2). To conclude,

we note that L = (α− 1)µ1x
2 + µ2x+ 3α < 0 for all x if µ1 < 0 and δ = µ22 − 12(α− 1)µ1 < 0

or for some x if µ1 > 0 and ∆ > 0. Obviously, if µ1 < 0, then ∆ > 0 making the first two of
conditions impossible. Hence, one must have µ1 > 0; ∆ > 0 to expect L < 0 for some x.
We denote the condition P2 : ∆ > 0. We can now state the stability theorem:

Theorem 5. Let X be a fixed point of the DFHN model.

(a) If P1(β), P1(β + 1) and P2 are satisfied, then X is asymptotically stable.

(b) If one of P1(β), P1(β + 1), or P2 is not met, then X is unstable. In this case, X is either
a saddle or a repeller.

5 Qualitative analysis of the DFHN model

In the simulation below, we will illustrate the existence of equilibria and show that DFHN model
preserves known phenomena of the CFHN, see for example [10]. For specifics, in Simulation
1 and 2, the starting points of the trajectories are respectively (3.5, 4) (red), (0.5, 4) (black),
(-3.5, 2) (green), (0,-2) (magenta), (-3.5,-5) (cyan), and (3.5, -3) (blue).

5.1 Simulation 1: Existence of equilibria

Existence of equilibria for the CFHN or DFHN models depends on the discriminant function
∆ = ∆(a, γ, I) defined above. In this section, we represent the phase space diagrams of the
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DFHN model when there is one asymptotically stable equilibrium point (∆ < 0), one unsta-
ble equilibrium point (∆ = 0), and three equilibrium points (∆ > 0), among which two are
asymptotically stable and one is unstable. In all figures, τ = 0.01 and ε = 0.5.

(a) (b)
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2
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Xt

Y
t

∆(a, γ, I)=−972

−4 −2 0 2 4

−
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−
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Xt

Y
t

∆(a, γ, I)=0

(c)
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−
4

−
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0
2
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Xt

Y
t

∆(a, γ, I)=55.296

Figure 1: Figure 1(a) shows the case where ∆(a, γ, I) < 0 and there is one stable equilibrium
(yellow point). The parameters are a = 2, γ = 1, I = 0. Figure 1(b) shows the case where
∆(a, γ, I) = 0 and there is one unstable equilibrium (yellow point). The parameters are a =
0, γ = 1, I = 0. Figure 1(c) shows the case where ∆(a, γ, I) > 0 and there are three equilibria,
two stable and one unstable (yellow points). The parameters are a = 0, γ = 5, I = 0 in all
figures.

Figure 1(a) shows the resting state, that is, there is not enough stimulus in the system
to create spikes. All trajectories, including the absolutely refractory ones (red and black), the
relatively refractory (green), the self-excitatory (magenta and cyan), and the active trajectory
(blue) eventually return to the resting state. In Figure 1(b), as the stimulus is progressively
increased, all trajectories are the result of spikes in the system, illustrated by a revolution
around the intersection between the isoclines in equations (4.1) and (4.2). In Figure 1(c),
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eventually, with enough stimulus, there are two phenomena that occur. One is the excitation
block phenomenon (see below) where spikes are blocked from occurring (blue, red, and magenta
trajectories). This may occur with a large current I in the system as well. The second phe-
nomenon is that of anodal block phenomenon where trajectories tend to make large excursions
before being blocked from producing spikes. This may also occur when the current is negative
and it is sometimes referred to as depolarization.

5.2 Simulation 2: Preservation of known phenomena

In this section, we will discuss known phenomena to the CFHN model. The CFHN model is
known to have a phenomenon called Absence of spikes or all-or-none-spikes in a HH model. It
also has phenomena known as the spikes accommodation, the excitation block, and the break
excitation phenomena, see for instance [10]. We use the parameters a = 0.97, ε = 0.5, γ = 1,
and τ = 0.01. Also, I = 0.3 (Figure 2), I = 0.81 (Figure 3), I = 1 (Figure 4), I = 2.1 (Figure
5), and I = −1 (Figure 6). In all phase space diagrams, the nullcline of x and y are respectively
the black line and the black hyperbola. The red curve represents the nullcline of x, when by
I = 0.

5.2.1 Absence of spikes phenomenon

The absence of spikes phenomenon is the fact that a small I results in a small amplitude-
trajectory and a larger I results in a large amplitude-trajectory, producing a spike, see Figure
2 and Figure 3.
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Figure 2: Here, I = 0.3. This stimulus is not strong enough to fire consistent spikes, Figure
2(a). The system settles in an equilibrium whose coordinates are the only real solution of
system of equations (4.1) and (4.2), and given as the intersection between the dashed blue
lines, Figure 2(b). This equilibria is classified as stable. This phase space diagram depicts the
dynamics of the DFHN model.
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Figure 3: Here, I = 0.81. The stimulus is strong enough to produce spikes, Figure 3(a), but
not enough to sustain them over the long run, and the orbit settles in the fixed point classified
as a spiral focus, Figure 3(b).

5.2.2 Spikes accommodation phenomenon

The spikes accommodation phenomenon is the fact that repetitive spikes are produced as the
network current or stimulus I increases beyond a certain threshold, see Figure 4.
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Figure 4: Here I = 1. The stimulus perturbs the stable equilibria into an unstable one,
producing sustained spikes over the long run, Figure 4(a). This is characterized by continuous
rotations around the fixed point by all trajectories. The fixed point in this case is unstable,
Figure 4(b).

5.2.3 Excitation block phenomenon

The excitation block phenomenon is the fact that sustained spikes are blocked from occurring if
large current I is input in the system, pushing the system to to settle in a stable equilibrium,
see Figure 5.
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Figure 5: Here, I = 2.1. Sustained spikes are blocked from occurring, Figure 5(a), and the
unstable point becomes progressively a stable focus, Figure 5(b).

5.2.4 Anodal break excitation

The anodal break excitation phenomenon is the fact that as the network current I becomes
negative (hyperpolarization), a trajectory that starts below the resting states will make a large
excursion in the phase space, firing a transient spike before returning to the resting state, see
figure 6.
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Figure 6: Here, I = −1. Any trajectory starting below the fixed point (cyan, magenta, and
blue), takes a long excursion in the phase space, Figure 6(b), firing a spike, before settling into
the rest state.

6 Quantitative analysis

Now that we have shown that the main features of the CFHN model are preserved in the
DFHN model, we will examine the DFHN model deeper. In oder to do so, we will use a
distance-based similarity analysis of their times series and probability-based similarity (as in
[6]) using the Wilcoxon-Rank-Sum test. We will also perform a sensitivity analysis to analyze
the most influential parameters in the model.
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6.1 Distance-based similarity analysis

In this section, we will discuss the similarity between the times series of the DFHN and CFHN
models, using a distance measure. First, let u = (u1, u2, · · · , uT ) be vector in RT where T is a
positive integer. We define ‖u‖ = max

1≤j≤T
|uj |. We consider the following:

Definition 6. Let u = (u1, u2, · · · , uT ), and v = (v1, v2, · · · , vT ) in RT .
The similarity between u and v is defined as S(u, v) = 1

1+‖u−v‖ .

The dissimilarity between u and v is defined as D(u, v) = 1− S(u, v) = ‖u−v‖
1+‖u−v‖ .

From this definition, we observe that: (1) 0 < S(u, v) ≤ 1 for all u, v ∈ RT . (2) If u = v,
then S(u, v) = 1 and D(u, v) = 0 whereas if ‖u− v‖ → ∞, then S(u, v)→ 0 and D(u, v)→ 1.
For simplification purposes, let Sx = S(xt, x(t)) and Dx = D(xt, x(t)). Sy and Dy are defined
similarly. Consider x0 = 0, y0 = 1, ε = 0.5, γ = 0.5, a = 1, I = 1, and T = 25. Figure
7 represents the trajectory with initial point (x0, y0) in the xy-plane. The continuous red
curve represents the CFHN and the discrete lines represent the DFHN model respectively
for τ = 0.005, 0.01, τ = 0.02. We first note that the shape of the trajectory is the same for all
values of τ . This is an illustration of the dynamical consistency of the NEDS method. Although
initially the trajectories of the DFHN model are very close to that of the CFHN model, they
we note that for larger values of τ , they differ while topologically being similar, see for instance
Figure 13. A close inspection of the trajectories in Figure 7 shows that the continuous model
has three loops with the largest being close to each other without being equal. The value of
τ = 0.01 seems to offer the trajectory most similar to this behavior. In general, τ has to be
chosen using a reasonable criteria and noting that the NEDS requires τ to be reasonably small
in the context of the variables, otherwise, it may be add bifurcations to the dynamics of the
FHN model that did not exist before.
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Figure 7: Trajectory of the CFHN model (red) and the DFHN model for τ = 0.005, 0.01, 0.02
respectively

Now we analyze individual time series of the discrete and continuous models for the same
parameters. Figure 8 represents the time series of the DFHN (blue) and CFHN (red), plotted
for the parameter τ = 0.005, 0.01, 0.02. A visual inspection shows that the two times series are
very “similar” with similarity values Sx = 0.9 and Sy = 0.5 when τ = 0.01. For τ = 0.005,
Sx = 0.350 and Sy = 0.326 and for τ = 0.02, we have Sx = 0.334 and Sy = 0.321. In the
last two cases, the difference is much more pronounced. Further, in Figure 9, we represent
the changes of similarity and dissimilarity as a function of τ . We observe that for some small
values of τ , the similarity is relatively high for both xt, x(t) and yt, y(t). The optimal value of
τ seems to be 0.01. However, when τ increases, the similarity decreases and the dissimilarity
increases. This can be explained by the fact that the combination of the parameters alters their
importance, therefore, a proper scaling must be made.
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Figure 8: Times series for the CFHN model (red) and the DFHN model (blue) for x0 = 0, y0 =
1, ε = 0.5, γ = 0.5, a = 1, I = 1, T = 25, and τ = 0.005; see Figure 8(a), τ = 0.01; see Figure
8(b), τ = 0.02; see Figure 8(c).
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Figure 9: Similarity and dissimilarity measures for parameters x0 = 0, y0 = 1, ε = 0.5, γ =
0.5, a = 1, I = 1, and T = 25.

6.2 Probability-based similarity analysis

Another way to compare the times series of the DFHN and CFHN models is to use a probability-
based measure, such as a nonparametric test. To fix ideas, let us recall how the Wilcoxon-
Mann-Whitney (WMW) Rank sum test works, see for instance [8] for further readings. Let U
and V be two mutually independent random variables with respective cumulative distribution
functions (c.d.f.) F (u) = Pr(U ≤ u) and G(v) = Pr(V ≤ v) for all u, v ∈ R. Now consider
random samples (independent and identically distributed) U1, U2, · · · , Un and V1, V2, · · · , Vm
from populations distributed similarly to U and V respectively. The WMW test has null
hypothesis H0 : F (t) = G(t) for every t ∈ R. This hypothesis suggests that U and V are
identical (or have the same c.d.f. though not specified). The alternative hypothesis are H1 :
G(t) = F (t −∆) for all t ∈ R. ∆ > 0 means that V tends to produce values larger than that
of U , ∆ < 0 means that V tends to produce values smaller than that of U . To make a decision
based on samples collected, we will combine the n + m sample values and compute TW =∑m

j=1Rank(Vj), where Rank(Vj) is the rank or order of Vj in the combined sample. For large

values of n and m, TW is distributed like a Gaussian N(µW , σ
2
W ) where µ0 = 2−1n(n+m+ 1)

and σ2W = 12−1nm(n + m + 1). We will denote P.valuex as the p.value of the WMW test
between xt and x(t). The similarity criteria will be that if the P.valuex is greater than 0.05
(standard practice in statistics), then xt and x(t) are similar, and the similarity increases as
the P.valuex approaches 1. The same applies to P.valuey. As above, we fix the parameters
x0 = 0, y0 = 1, ε = 0.5, γ = 0.5, a = 1, I = 1, and T = 25. In Figure 10, we observe that the
P.valuex and P.valuey are relatively large for 0 < τ ≤ 0.01. This shows that xt and x(t) and
yt and y(t) are statistically identical at significance level 0.05. However, xt and x(t) remain
statistically identical for 0.01 ≤ τ < 0.45 whereas yt and y(t) are not. This is at odds with
the findings of section 6.1 where similarity or dissimilarity for xt and x(t) and that of yt and
y(t) occurs for the same values of τ . This discrepancy can be explained by the fact that DFHN
and CFHN models are coupled (or correlated) dynamical system of equations, and as such, the
samples obtained are not independent as required in the WMW test, a similar caution already
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raised in [6].
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Figure 10: p.values of the WMW tests for x0 = 0, y0 = 1, ε = 0.5, γ = 0.5, a = 1, I = 1, and
T = 25.

6.3 Sensitivity Analysis

There are many approaches used in practice to perform sensitivity analysis each with advantages
and inconveniences. The most popular methods are the so-called variance-based methods. To
illustrate the approach, consider the following model:

R(t) = f(t, α1, α2, · · · , αd), (6.1)

where R(t) is an output or a response at time t to d factors αi for 1 ≤ i ≤ d. Assuming
uncertainty (stochasticity) in the factors αi, let the total variance of R(t) be defined as V (t) =
Var(R(t)). Then we have the following decomposition of the variance of R(t):

V (t) =
d∑
i=1

Vi(t) +
d−1∑
i=1

d∑
j=i+1

Vij(t) +
d−2∑
i=1

d−1∑
i=j+1

d∑
k=1

Vijk(t) + ·+ V1···d(t), (6.2)

where Vi(t) = Var(E[R(t)|αi]) is the variability associated with the main effect αi, Vij(t) =
Var(E[R(t)|αi, αj ])− Vi(t)− Vj(t) is the variability associated with the interaction between αi
and αj , Vijk(t) = Var(E[R(t)|αi, αj , αk])− Vi(t)− Vj(t)− Vk(t)− Vij(t)− Vik(t)− Vjk(t) is the
variability associated with the interaction between αi, αj , and αk, etc, and E[R(t)|αi] is the
expected value of R(t) given αi. We note that X|Y here means X given Y (or X conditioned
on Y ). We define the first, second, third order sensitivity indices as:

Si(t) =
Vi(t)

V (t)
, Sij(t) =

Vij(t)

V (t)
, Sijk(t) =

Vijk(t)

V (t)
.

We will also be interested in total-order effect sensitivity index TSi(t) which is the sum over
first order effect of the ith factor and its interactions of any order with other factors, that is,

TSi(t) = Si(t) + Sij(t) + Sijk(t) + · · ·+ Si···d(t) = Si(t) +
d∑
l=1

Sij1j2···jl(t) .
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For implementation, we will use the so-called “fast99” method, which allows to estimate the
Sobol’s first and total indices (see [20]) with the so-called “Saltelli extended-FAST” method,
see [18]. The implementation was carried out in R (4.00 version) using the packages sensitivity
and multisensi. For the DFHN model, the factors of interest are starting point (x0, y0), and
the model parameters τ, ε, γ, a, and I, so that d = 7. We will use T = 5 to better visualize
the evolution of the sensitivity indices (The case T = 100 is given in the appendix B). The
seven parameters were taken from the hypercube [−4, 4]× [−4, 4]× [0.05, 2]× [0.05, 2]× [0.1, 2]×
[0.05, 5]× [−5, 5] .

From Figure 11, we observe that, in terms of variance, x0 is the most important parameter
at t1 for both xt and yt. At t2, I becomes the most important parameter for xt whereas γ is
the one for yt. γ remains the most important parameter afterward with a total index close to
0.9. We observe that the other parameters have rising total indices overtime and eventually,
they will have equal importance overtime, see Figure 14 in Appendix B. This can be explained
by the fact that the total index contains all various interactions with other parameters and
the influence of those interactions increases overtime as seen in Figure 14. That parameters
I, x0, y0, and ε are the most influential for xt in the beginning. However, the influence of ε
decreases overtime, see Figure 14(a). This is confirmation that the discrete model performs
as expected since these are the only parameters involved in that the model. We observe also
that parameters a, γ and τ have less influence on the variance early on but overtime, a becomes
very influential. The same observation can be made about parameters γ, a, x0, y0 and τ which
are the most important for yt early on. Overtime, the most influential parameters for yt are
γ, a, x0, y0 and I, see Figure 14(b) .
These findings are further confirmed in Figure 12. Indeed, we show the evolution of first order
indices (light gray) relative to the total index (black) for xt (Figure 12(a)) and for yt+1 (Figure
12(b)). Figure 12(b) reveals in particular that the first order sensitivity of parameter γ remains
an important part of the total sensitivity index overtime while Figure 12(a) reveals that the
contribution of the first order sensitivity index of ε in its total sensitivity index decreases
overtime. This means that interactions between the parameters overtime are the main sources
of variability for of xt whereas for yt, γ is still a great source of variability. The takeaway from
this dynamic sensitivity analysis is that there is no unexplained part of the variance, that is,
no exogenous quantity contributes to the variance overtime.

Remark 7. Of interest in sensitivity analysis is also the notion of “generalized sensitivity
index” (GSI). However, there is no unifying quantity that has emerged in the literature about
the best way to assess the GSI for a model. We therefore chose in this paper not to include it
in our discussion.
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Figure 11: (a) and (b) show the evolution of first indices and (c) and (d) show the evolution
of total indices from t1 to t5 for outputs xt and yt.
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Figure 12: Figure 12(a) and Figure 12(b) show the evolution of first order indices (light gray)
relative to the total index (black) for xt and for yt.

7 Concluding remarks

In this paper, we have proposed a discrete version of the FitzHugh-Nagumo model using a NEDS
method, an iteration of the non-standard discretization technique of Mickens [15]. Advantages
of the model obtained include the fact that it faithfully reproduces the behavior of the ODE
it was discretized from, preserving the original dynamics, and without adding behaviors that
would have otherwise not existed. Often, DE models obtained using the Euler method would
have mathematical properties not present in the ODE. One disadvantage of the method is that
the stability analysis of the discrete system is not easy to discuss and the conditions on the
parameters to obtain stability of the fixed points are not trivial, even after reparametrization.
This is an improvement that may warrant further discussions. The simplicity of the discrete
model may make it useful in parameter estimation in data analysis. Indeed, experimental data
and parameter estimation from these data on the FHN model have been attempted. However,
it was not always clear how the parameters were estimated from data, see for example [5]. This
model could be used to improve the values of the parameters obtained during that experiment.
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Appendix

Appendix A: Supplemental Figures for similarity analysis
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Figure 13: This figure shows the trajectory (red) of the CFHN model for parameters x0 =
0, y0 = 1, ε = 0.5, γ = 0.5, a = 1, I = 1, and T = 25. The green dashed lines represent the
trajectories of the DFHN for the same parameters and for 100 values of τ , equally spaced
between 0.005 and 0.3.

Appendix B: Supplemental Figures for sensitivity analysis

xt+1 yt+1

(a) (b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

To
ta

l I
nd

ic
es

t1 t7 t14 t21 t28 t35 t42 t49 t56 t63 t70 t77 t84 t91 t98

I
a
x0
y0
tau
epsilon
gamma

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

To
ta

l I
nd

ic
es

t1 t7 t14 t21 t28 t35 t42 t49 t56 t63 t70 t77 t84 t91 t98

gamma
a
x0
I
y0
epsilon
tau

Figure 14: Figure 14(a) and Figure 14(b) show the evolution of total indices from t1 to t100
for outputs xt+1 and yt+1.

21


	Introduction
	Review of the NEDS Method
	NEDS for the FitzHugh-Nagumo Model
	Dynamics of the DFHN model
	Fixed points
	Stability Analysis

	Qualitative analysis of the DFHN model
	Simulation 1: Existence of equilibria
	Simulation 2: Preservation of known phenomena
	Absence of spikes phenomenon
	Spikes accommodation phenomenon
	Excitation block phenomenon
	Anodal break excitation


	Quantitative analysis
	Distance-based similarity analysis
	Probability-based similarity analysis
	Sensitivity Analysis

	Concluding remarks
	References

