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Math 3320

Projects Guidelines

I The goal of these projects is for students to demonstrate their ability to use appropri-

ate probability and statistical tools and techniques to solve engineering problems in group

projects

The following is the outline that will be used for this assignment. You will participate,

present your research, and turn in your accompanying report for full credit in this course.

You will be paired up with at most two course mates for your project. Your will earn an indi-

vidual maximum grade of 200 divided into 100 for your report and 100 for your presentation

1. Project Guidelines

1.1 Structure of your report

I Your report should be typeset, no more than 10 pages long. Failure to do so will result in

grade of 0 for the entire report.

I You can use any software you want for your simulations/calculations: Matlab, Mathemat-

ica, Maple, Python, Java, R, Minitab, etc. Just make sure to mention which one was used

in your report.

I Your report should have the following structure to be acceptable. No departure from this

format will be accepted.

1. Introduction (15 pts) : This is the fist section of your report. Briefly describe your

motivation for choosing the project and provide the significance of the problem based

on a literature review and/or your best knowledge.

2. Statement of the problem (25 pts): This is the second section of your report.
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(a) Briefly describe the problem, or the specific research question to be answered or

the hypothesis to be tested, etc.

(b) Clearly state what you want to achieve.

3. Methodology (25pts): This is the third section of your report.

(a) Clearly demonstrate the connection of this project to Probability and Statistics.

(b) List the procedures. (A detailed description of what you did and step-by step)

(c) Describe data processing and analysis. (How will you analyze the data and why?)

i. If you don’t have data, make it up or ask the instructor.

ii. Are the tables and graphs appropriately used?

4. Results (25 pts): This is the fourth section of your report. Report the results you

obtained.

(a) Explain your results clearly and concisely.

(b) Discuss the limitations and challenges of the methodology you used.

(c) Briefly discuss what you think can be done to improve your results.

5. Bibliography (10 pts): This is fifth and final section of your report. You should list

in alphabetic order all the references you used for your project. use any acceptable

scientific format for articles, books, websites etc.

1.2 Project’s Presentation

I Each project will have to be presented.

I The presentation should be prepared in a CLT room, videotaped, and posted on the

project’s forum on TLearn by the date suggested on Benchmark 4 below.
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I All group members should provide feedback on at least one other suggested group and

failure to do so will result in a lost of 20 points.

I Below are the necessary items for an acceptable presentation.

1. Be properly attired (5 pts)

2. Comments on other presentations (15 pts)

3. Each group member should comment on another suggested project (20 pts)

4. Have a good flow (chemistry) among the group members (20 pts)

5. Submit your presentation on time and it should be about your actual project (20 pts)

6. Pass all the 4 Milestone (20 pts)

1.3 Project’s Benchmarks

I Each project will need to meet at least two of four benchmarks to be accepted. Less

than two benchmarks achieved by the end of the semester will result in a grade of 0 on the

entire project!

I Each progress report must be submitted on TLearn by the date mentioned below with

the subject: MATH 3320-F16-Group number: Milestone i, where i could be 1, 2, 3

or 4.

Progress report Description Date

Milestone 1 Choosing your project September 13

Milestone 2 Layout of your research goals and objectives September 29

Milestone 3 Implementation of your goals November 3

Milestone 4 Final Presentation and Report Submission December 1

2. Projects

I You can choose a project under the co-supervision of a Faculty (See the list below. More-

over, you are highly encouraged to discuss this project with the faculty) or choose your
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project based on the topics provided below.

I Do not choose a project outside of these topics.

I Should you find the need to consult with me on a project, please do so during office hours

or by appointment only.

2.1 Faculty proposed projects

1. Radio Station Design: Design a radio station to broadcast a signal with a certain prob-

ability distribution. This requires finding the information content of the signal and

design the station accordingly. (Dr. Aminian)

2. Hard Drive Design Design a hard drive to store data with certain probability distribu-

tion (Gaussian, random, etc.) at a certain rate (Mb/s). In this project, students need

to design an appropriate A-to-D converter using the signal distribution and find the

channel capacity for the connection to the motherboard, e.g. SATA. (Dr. Aminian)

3. Simulation of electron motion in semiconductors (Monte Carlo simulation): This project

considers motion of an electron in a semiconductor under influence of an electric field.

The electron goes through free flight for a time which can be selected from a normal

distribution. During the motion, the final velocity of the electron when free flight is

over would be v2=v1+(e*E/m)*t where t is the time of flight, E is the applied electric

field and e and m are electron’s charge and mass. After free flight is collision with an

atom (knows as electron-phonon collision). during this process, electron can absorb a

phone or eject a phone thus gaining or losing energy. There could be several types of

collisions which can be randomly selected from a pool of 2 to 4. A simulation lasting

1M free flights can give an indication of what is happening to the electron in steady

state. (Dr. Aminian)

4. Monte Carlo Simulation Generating random numbers from a distribution function which

cannot be integrated analytically and apply it to electron motion in semiconductors

(Dr. Aminian)

5. Robot Localization 1: Very similar to (3), except that sensor readings are used to re-

weight each particle and the ones with greater weight are more probable to be selected

in the next iteration. Known as a “particle filter” in robotics. (Dr. Nickels)
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6. Robot Localization 2: The idea is to make a geo-referenced library of image (features)

then dynamically take and image and compute offsets to the nearest N images (proba-

bly 2-4), and use this to compute the location from which the new image was taken. I

could see a probabilistic or a statistical formulation of this problem (either find a PDF

of the robot location, or find the likelihood of a false match). (Dr. Nickels)

7. Mapping: The most probabilistic formulation would be to give/develop a probabilistic

model of a sensor and have a grid of locations, each element of the grid containing

p(o), the probability that this grid cell is occupied by an obstacle. Then, given a set

of sensor readings and robot locations, each grid cell is updated. (Dr. Nickels)

8. Kalman Filtering: In this formulation, a robot’s location is modeled as a gaussian. A

(set of) sensor readings is also modeled as a gaussian. The readings are then used to

update the robot’s location. If the uncertainty profile of the sensor readings is constant,

this devolves to a Weiner Filter. I’ve also seen this used in radar-style tracking, and

in partially observable robot arms. (Dr. Nickels)

9. Odometry Motion Model: Making some (probabilistic) assumptions about wheel slip,

motor control, etc. model the motion of the robot in the world as an evolving distri-

bution function. (Dr. Nickels)

2.2 Projects Topics

1. Information Theory

2. Mathematics of Shuffling

3. Probability in Stock Markets

• Is Warren Buffet an investment genius or incredibility lucky?

• Does the stock market remember yesterday?

4. Spam Filters

5. Visualizing Probability
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6. Gambling

7. Probability and Sports

• Diving/flopping culture in sports.

• Is women tennis unpredictable?

• Predicting a team’s winning percentage in the NBA/NFL.

8. Digital Image or Speech processing

9. Probability and Weather Forecast

10. Least Square Modeling in Digital Communication

11. Data Analysis of Electric Cars Versus Gas Cars

12. Data analysis for prediction of presidential election.

13. Modeling weather effects on road casualty statistics in the U.S.
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Math 3320

Group 1: Dakota Grusak, Chris

Nkinthorn, Gregory Wassom

Project’s Report Feedback

Required Sections Maximum Grade Your grade My comments

Introduction 15 15 Well written.

Statement of the Problem 25 20 That was missing and be-

cause it was embedded in

the introduction.

Methodology 25 25 Well explained. You cover

all the key points in your

statistical analysis.

Results 25 25 Well explained as well.

Bibliography 10 10 Well done.

Other comments I like the depth of your anal-

ysis. I like your findings.

Total 100 95 You made a comment about

the two distributions being

reconcilable. If you over-

lay the two graphs, you will

realize that the theoretical

model covers more possibil-

ities, including the Billion +

simulations that you did.
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Project’s Presentation Feedback

Required Sections Maximum Grade Your grade My comments

Be properly attired 5 5 Well done

Comments of another pre-

sentation

35 35 Well done

Chemistry among group

members

20 15 Not too bad but not well co-

ordinated

Timely submission of the

presentation

20 10 You did not submit the re-

port on time

Pass all 4 Milestones 20 20 Well done

Other comments Your video editing was not

well done

Total 100 85
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%% Stats Project: Odometric Model Code  
  
% MATH 3320 - Probability and Statistics for Engineers and Scientists 
% Group: Dakota Grusak, Chris Nkinthorn, Gregory Wassom 
% Instructor: Eddy Kwessi, Ph.D.  
  
  
%% Initialize Program 
  
% Clear Workspace and Window 
clc 
clear 
  
% Robot Parameters 
n = 4;      % Count Value for Full Revolution  
r = 3;      % Wheel Radius 
l = 5;      % Wheelbase 
  
% Path Parameters 
syms t 
x = 50*sin(t);                      % Function for x-position 
y = -(50*cos(t) - 50) ;             % Function for y-position 
posx = matlabFunction(x);           % Convert x Symbolic to Anonymous 
Function 
posy = matlabFunction(y);           % Convert y Symbolic to Anonymous 
Function 
dx = diff(x);                       % Function for x-derivative 
dy = diff(y);                       % Function for x-derivative 
delt = 10^(-5);                     % Differential step in t 
  
% Boundaries of Path 
a = 0;     % Lower Bound of t 
b = pi/2;     % Bpper Bound of t 
  
% Length of Unit Increase of Wheel  
d = (2*pi*r)/(n);               % Distance Increase 
arctheta = atan(d/(2*pi*l));    % Arc with Distance Increase 
  
% Initial Direction 
init_direc = 0; 
  
% Robot Wheel Location (Initial) 
whe_lx = posx(0) + l/2*cos(pi/2 + init_direc);      % Left Wheel Position 
whe_ly = posy(0) + l/2*sin(pi/2 + init_direc); 
  
whe_rx = posx(0) + l/2*cos(3*pi/2 + init_direc);    % Right Wheel Position 
whe_ry = posy(0) + l/2*sin(3*pi/2 + init_direc); 
  
% Robot Position (Initial) 
ropo_x = (whe_lx + whe_rx)/2;   % Robot Position in the x 
ropo_y = (whe_ly + whe_ry)/2;   % Robot Position in the y 
  
% Initialize Values 
dist = 0; 
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position_vec = [ropo_x ropo_y]; 
countl = 0; 
countr = 0; 
count = [countl countr]; 
rotheta = -pi/2; 
  
% Probablility Parameters 
pr = 0.001;                       % Probability of Missing an Encoder Count               
iter = 500; iter = 1:iter;       % Iterations of Bernoulli Applications 
val = 10^3; 
  
  
%% Path Calculation 
  
% Explanation: 
% This portion of uses the parametric path input and calculates the length 
% of the path the robot will follow. This is used to end the simulation  
% when the robot has passed reached the end of the path.  
  
% Length of Parametric Function 
f = sqrt(diff(x)^2 + diff(y)^2);         
L = int(f,t,a,b); 
Length = vpa(L,6); 
Length = double(Length); 
L = Length; 
clearvars Length; 
  
% Path Slope Functions  
diffx = diff(x); 
diffy = diff(y); 
diffdiffx = diff(diff(x)); 
diffdiffy = diff(diff(y)); 
  
% Position Function  
pos(t) = [x y 0]; 
pos = matlabFunction(pos); 
  
  
%% Minimum Radius of Curvaure Condition 
  
% Explanation: 
% This portion of code calculates the smallest radius of curvature  
% associated with the path calculation and compares it to the length of the 
% wheelbase. If the minimum radius of curvature is less than the wheelbase  
% the code ends. This is because neither wheel can go backwards; the  
% center of the robot would not follow that path.  
  
rhocurve = ((diffx^2 + diffy^2)^(3/2))/(abs(diffx*diffdiffy - 
diffy*diffdiffx)); 
rhocurve = matlabFunction(rhocurve); 
tr = fminbnd(rhocurve, a, b); 
minrhocurve = rhocurve(tr); 
  
if minrhocurve < l 
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    fprintf('Path cannot be processed. Wheelbase is larger than the minimum 
radius of curvature of the path.\n'); 
    fprintf('The path must be changed for reasonable count array values.\n'); 
    return 
end 
  
  
%% Robot Following Path 
  
% Explanation: 
% This is the body of the code. This loop calculates the distance the 
% robot as traveled. If the total length the obot has travled. If it less  
% than the calculated path length, then the loop continues. The script  
% calcuates the position of the robot and then estimates the value 't'  
% that describles the point on the path, nearest to the robot. This value 
% 't' is then used to descrive the slope of the path. This slope is compared 
% to the orientation of the robot. From this, one of the wheel positions is  
% changed. The distance traveled is calculated and the loop repeats. 
  
% Path Loop Calculation 
  
%while dist < L                     % One of these loops is used for        % 
comment out 
                                    % computation or testing.               % 
comment out                
for i = 1:10 
         
    % Robot Pose Parameters  
    ropo_x = (whe_lx + whe_rx)/2;   % Robot Position in the x 
    ropo_y = (whe_ly + whe_ry)/2;   % Robot Position in the y 
    ropo = [ropo_x ropo_y 0];       % Robot Position Vector 
    roor = [(whe_rx - whe_lx) (whe_ry-whe_ly) 0]; % Vector from left to right 
wheel 
  
    % Solving for 't' Value Nearest  
    dist_eqn = (x - ropo_x)*dx + (y - ropo_y)*dy;  
    ts = abs(solve(dist_eqn ,t)); 
    ts_temp = vpa(ts,6); 
    ts_temp = double(ts_temp); 
    ts = ts_temp; 
    clearvars ts_temp; 
  
    % Loopback Error 
    pos_error = [(ropo_x - posx(ts)) (ropo_y - posy(ts))]; 
    if norm(pos_error) > l/4 
        pos_error_l = [(whe_lx- posx(ts)) (whe_ly-posy(ts))]; 
        pos_error_r = [(whe_rx- posx(ts)) (whe_ry-posy(ts))]; 
        if norm(pos_error_l) < norm(pos_error_r) 
            whe_rx = whe_lx + l*cos(rotheta + 3*arctheta); 
            whe_ry = whe_ly + l*sin(rotheta + 3*arctheta); 
            count = [count; 0 1; 0 1; 0 1]; 
            whe_lx = whe_rx + l*cos(pi + rotheta - arctheta); 
            whe_ly = whe_ry + l*sin(pi + rotheta - arctheta); 
            count = [count; 1 0]; 
        else 
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            whe_lx = whe_rx + l*cos(pi + rotheta + 3*arctheta); 
            whe_ly = whe_ry + l*sin(pi + rotheta + 3*arctheta); 
            count = [count; 1 0; 1 0; 1 0]; 
            whe_rx = whe_lx + l*cos(rotheta - arctheta); 
            whe_ry = whe_ly + l*sin(rotheta - arctheta); 
            count = [count; 0 1]; 
        end 
         
    else 
        direc = pos(delt+ts) - pos(ts); 
        theta = atan2(norm(cross(direc,roor)), dot(direc,roor)); 
        rotheta = atan2(roor(2),roor(1)); 
        sgn = sign(theta-pi/2); 
  
        if sgn > 0 
            whe_rx = whe_lx + l*cos(rotheta + arctheta); 
            whe_ry = whe_ly + l*sin(rotheta + arctheta); 
            count = [count; 0 1]; 
        else 
            whe_lx = whe_rx + l*cos(pi + rotheta - arctheta); 
            whe_ly = whe_ry + l*sin(pi + rotheta - arctheta); 
            count = [count; 1 0]; 
        end  
    end 
        
    ropo_x2 = (whe_lx + whe_rx)/2;   % Robot Position in the x 
    ropo_y2 = (whe_ly + whe_ry)/2;   % Robot Position in the y 
  
    dist = dist + sqrt((ropo_x - ropo_x2)^2 + (ropo_y - ropo_y2)^2);    % 
Calculate distance 
  
    ropo_x = ropo_x2; ropo_y = ropo_y2; % Calculate new location 
     
    position_vec = [position_vec; ropo_x ropo_y]; 
     
end 
  
  
%% Plot Function 
  
% Explanation: 
% The purpose of this portion or code is to plot the parametric path and  
% the path of the robot based on encoder values. It then saves itself as  
% a figure. 
  
t = a:(b-a)/1000:b; 
  
xp = posx(t); 
yp = posy(t); 
  
% Create and Change to Data Folder 
  
Folder = pwd; 
[PathStr,FolderName] = fileparts(Folder); 
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plotpathname = [FolderName ' Path Print']; 
  
if ~exist('data_plots', 'dir') 
  mkdir('data_plots'); 
end 
  
cd('data_plots') 
  
% Path Figure  
  
figure(1) 
plot(xp,yp,position_vec(:,1),position_vec(:,2), 'o','MarkerSize',8) 
  
leg = legend('Intended Path of Robot'); 
title('Path of a Two Wheeled Robot Odometry') 
xlabel('Position in x') 
ylabel('Position in y') 
  
saveas(1, plotpathname, 'png'); 
save('variables.mat') 
  
for run = 1:val 
  
%%  Bernoulli Application 
  
% Explanation: 
% The purpose of this portion of code is to use the array of encoder count 
% values and apply the Bernoulli to each encoder vector separately. This 
% is done for many iterations, as specified by the user. 
  
count_mod = zeros(max(size(count)), min(size(count)), max(size(iter))); 
  
for k = 1:max(size(iter)) % For all iterations 
    for i = 1:length(count) - 1 % Length of the count array 
        for j = 1:2 % For each wheel encoder 
            if count(i + 1, j) ~= count(i, j) && binornd(1, pr) == 1 
                if count(i, j) == 0 
                    count_mod(i, j, k) = 1; 
                else 
                    count_mod(i, j, k) = 0; 
                end 
            else 
                count_mod(i, j, k) = count(i, j); 
            end 
        end 
    end 
end 
  
%% Generating Final Points 
  
ropo_mod_final_pos = zeros(max(size(iter)), 2); 
  
parfor i = 1:max(size(iter)) 
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% Mod Wheel Left Position (Initial) 
  
whe_lx_mod = posx(0) + l / 2 * cos(pi / 2 + init_direc); 
whe_ly_mod = posy(0) + l / 2 * sin(pi / 2 + init_direc); 
  
% Mod Wheel Right Position (Initial) 
  
whe_rx_mod = posx(0) + l / 2 * cos(3 * pi / 2 + init_direc); 
whe_ry_mod = posy(0) + l / 2 * sin(3 * pi / 2 + init_direc); 
  
for j = 2:max(size(count)) 
  
    % Mod Robot Position 
    ropo_x_mod = (whe_lx_mod + whe_rx_mod) / 2; 
    ropo_y_mod = (whe_ly_mod + whe_ry_mod) / 2; 
  
    roor_mod = [(whe_rx_mod - whe_lx_mod) (whe_ry_mod - whe_ly_mod) 0]; 
    rotheta_mod = atan2(roor_mod(2), roor_mod(1)); 
  
    if count_mod(j, 1, i) == 0 
        whe_rx_mod = whe_lx_mod + l * cos(rotheta_mod + arctheta); 
        whe_ry_mod = whe_ly_mod + l * sin(rotheta_mod + arctheta); 
    else 
        whe_lx_mod = whe_rx_mod + l * cos(pi + rotheta_mod - arctheta); 
        whe_ly_mod = whe_ry_mod + l * sin(pi + rotheta_mod - arctheta); 
    end 
  
end 
  
ropo_mod_final_pos(i, :) = [ropo_x_mod ropo_y_mod]; 
  
end 
  
% Plot Final Points 
  
final_pos(:, :, run) = ropo_mod_final_pos; 
  
save('final_pos') 
  
end 
  
figure(2) 
plot(xp, yp, position_vec(:, 1), position_vec(:, 2), 'o', 'MarkerSize', 8) 
  
hold on 
for run = 1:val 
    plot(final_pos(:, 1, run), final_pos(:, 2, run), 'x', 'MarkerSize', 2, 
'Color', 'Green') 
end 
  
leg = legend('Intended Path of Robot'); 
title('Path of a Two Wheeled Robot Odometry with Final Locations') 
xlabel('Position in x') 
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ylabel('Position in y') 
  
plotlocationname = [FolderName ' Location Print']; 
saveas(2, plotlocationname, 'png'); 
  
cd('..') 
 

25



Math 3320

Group 2: Nic Rodriguez, Brandon

Donnermeyer, Evan McDowell

Project’s Report Feedback

Required Sections Maximum Grade Your grade My comments

Introduction 15 15 Well done

Statement of the Problem 25 20 It was not well written at

the end

Methodology 25 20 You did not explain how

you got the OE equation. If

you came up with the equa-

tion, what was the motiva-

tion. if you did not, provide

a citation

Results 25 25 Except from a couple of ty-

pos, the section was well

written and limitations of

the method was given

Bibliography 10 10 Well done

Other comments A title is missing for your

project

Total 100 90
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Project’s Presentation Feedback

Required Sections Maximum Grade Your grade My comments

Be properly attired 5 5 Well done. Adequate for the

subject chosen

Comments of another pre-

sentation

35 30 Well done

Chemistry among group

members

20 20 Well coordinated

Timely submission of the

presentation

20 20 You submitted your mile-

stones on time

Pass all 4 Milestones 20 20 Well done

Other comments Your video editing was very

well done.

Total 100 95
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Introduction: 

Sports in the United States give people unbridled excitement and entertainment, and can 
sometimes act as an escape from everyday life. The competitive nature of professional sports in tandem 
with the obsession over statistical record keeping and scrutiny of records have captivated the sports 
enthusiasts of the world. Because of this, and because our group closely relates to athletics and 
competitive sports in general, our group chose the project prompt that coupled professional sports and 
probability. We chose to use the United States and its most popular sport, American Football as our 
specific area of interest due to its highly competitive environment, rules, and system the NFL abides by 
are very familiar to all members of our group. Using this collective understanding to our advantage, we 
sought to seek an answer to a question that dwells on every NFL fan’s mind prior to the beginning of each 
season: “How many games will we win this season?” Being the topic of many pre-season debates, we 
wanted to create a method that could be used to progressively predict the number of wins a team could 
earn during the regular season using the measurable statistics from that week’s contest.  

 

Problem Statement:  

We’re want to determine if the number of wins a franchise in the NFL earns in a season can be 
correlated to the measurable statistics provided by a team’s weekly performance. By experimenting with 
several of these measurable statistics such as turnover ratio, yards gained, yards lost, and average point 
differential, our group’s goal is to be able to prove or disprove the experimental hypothesis of whether the 
weekly measurable statistics of any NFL team can be used to accurately predict the number of wins they 
will be able to achieve in a single season. Specifically, we are going to consider a success any prediction 
that is within a full game of the actual number of wins a team earns during the regular season.   

 

Methodology: 
To create a model for predicting the number of wins in a season we needed to obtain sample data. 

To do this we used “sports-reference.com” and downloaded statistical data from the last 15 years of NFL 
football starting from 2002 and ending at the current 2016 season. Since the 2016 season was still 
ongoing we updated the 2016 data with at end of the last regular season game of each week. Our strategy 
for creating a mathematical model was rather simple. We’d look at one stat at a time and make a scatter 
plot in excel of the specific stat vs the number of wins per team per season. If the stat looked promising, 
we would conduct a simple linear regression analysis using excel to determine if we would proceed 
further. After doing a quick analysis of many different of the different stats available to us we decided to 
go with point differential which is the difference between points scored and points allowed each game and 
a stat we developed called offensive efficiency. Offensive efficiency (OE) considers average run yards 
per game, average run yards allowed per game, average pass yards, average pass yards allowed per game, 
turnovers, and opponents turnovers.  
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𝑂𝐸 =

𝑅𝑢𝑛	𝑦𝑎𝑟𝑑𝑠
𝑅𝑢𝑛	𝑦𝑎𝑟𝑑𝑠	𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ∗

𝑝𝑎𝑠𝑠	𝑦𝑎𝑟𝑑𝑠
𝑝𝑎𝑠𝑠	𝑦𝑎𝑟𝑑𝑠	𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑅𝑢𝑛	𝑦𝑎𝑟𝑑𝑠
𝑅𝑢𝑛	𝑦𝑎𝑟𝑑𝑠	𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ∗

𝑝𝑎𝑠𝑠	𝑦𝑎𝑟𝑑𝑠
𝑝𝑎𝑠𝑠	𝑦𝑎𝑟𝑑𝑠	𝑎𝑙𝑙𝑜𝑤𝑒𝑑 +

𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑠
𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑠	𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑠

 

 

(1) 

Scatter plots for both can be seen below. 

  

Figure 1: (left) OE for the 2015 season. (right) Point difference for the 2015 and 2014 season.  

 We uploaded the stats to Matlab for further analysis. Since both at first glance look like they 
could take on a linear model we did a linear regression analysis on both stats and concluded due to the 
complexity of the OE model, the time it took to collect the data necessary for that particular model, and 
the fact that the linear regression analysis showed more of a linear correlation with the point differential 
model we decided to focus all our efforts on building a mathematical model to predict the number of wins 
per season using the point difference stat. 

  

Figure 2: Linear regression analysis of point difference vs wins (left). Linear regression analysis of OE vs 
wins (right). 

       To build the model we used Matlab to run a 1000 simulations using a random 70% of the data 
every time. With each simulation Matlab gave us different coefficients for our linear model so we 
summed each coefficient and divided the sum by the number of simulations to obtain an average.  
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 𝑊𝑖𝑛𝑠 = 𝑥1 + 𝑃𝑜𝑖𝑛𝑡𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝑥2 (2) 
The model can be seen in equation 2 with x1 being the intercept coefficient and x2 being the slope 
coefficient. Once we obtained the average coefficients predicting the number of wins per season for each 
team was the easy part. We simply had Matlab calculate the number of projected wins by using equation 
2 and inputting each team’s respective point difference. Before we went and predicted the outcome of the 
2016 season we needed to verify that the model held up outside the range of data used to build it so we 
repeated the process used to build the first model but we split the in half and used half to build the model 
and half to test the model. Once the we verified that it held up we went and obtained predictions for the 
2016 NFL season using the data accumulated through the first 12 weeks of the 2016 season. However, to 
obtain the predictions we had to slightly alter equation 2 to account for the fact that not all 16 regular 
season games had been played in the 2016 season. Instead of just using straight point difference we used 
the average point difference per game which didn’t change the overall outcome of previous models it 
simply changed the coefficients of the equation as seen in equation 3. 

Results: 
              After we narrowed our focus down to two different stats, OE and point difference, we performed 
a linear fit of the data using Matlab. The linear fit of the OE data produced an R-squared vale of 0.76 and 
a root mean squared error of 1.52. The point difference data produced an R-squared value of 0.849 and a 
root mean squared error of 1.2, which implies a much better correlation than the OE data. Since both data 
sets seemed promising we did a linear regression analysis for both OE and point difference which can be 
seen in figure 2 and concluded that while both sets of data followed a linear trend, point difference could 
be used to build a better model than the OE data. We than simulated all 448 collective NFL seasons from 
2002-2015 one thousand times using a random 70% test data for each simulation and produced the 
equation seen below.  

 
𝑊𝑖𝑛𝑠 = 7.9903 + 0.4462 ∗

𝑃𝑜𝑖𝑛𝑡𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
#	𝑜𝑓	𝑔𝑎𝑚𝑒𝑠	𝑝𝑙𝑎𝑦𝑒𝑑

 
(3) 

 

To test that this was an accurate model of the given data we plugged in the point difference for each team 
and produced the data seen in appendix A-1. Using this model, we obtained an overall average difference 
of 0.95 games between predicted wins and actual wins for all individual 448 NFL seasons since 2002. 
Before we could predict the end of the 2016 season we needed to verify that our model could hold true 
outside of the given range of data so we split our data in half and used the 2002-2008 seasons to build a 
model and used the built model to predict the 2009 – 2015 seasons. In doing so we obtained an average 
game difference of 0.9129 games which was better than the previous model using the complete set of 
data. We than used the original model that contains all 448 season to predict the end of the 2016 season.  
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Figure 3: 2016 predictions using the average point difference per game for each team through week 12. 

           Some limitations with this model is that close games and blowout wins effect the predictions a lot. 
Take the Oakland Raiders for example, they have a low point differential per game but and are predicted 
to win only 9 games. However, as of week 12 they’ve already won 9 games so the model is saying that 
they are most likely going to lose the rest of the season. The model also doesn’t consider the strength of 
each team’s schedule or the quality of teams they are yet to play so if we were to add those factors into 
the mix I feel like we could have an extremely accurate model. With the limited amount of time we had, 
this model has excelled our expectations. 
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Appendix A-1: tables for 2002-2015 predictions (PWins = Predicted Wins) 
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Introduction: 
 
 In the field of robotics, sensors are used to localize an automaton within its environment 
and then update the current grid based on the sensor readings. Robots must have knowledge of 
their pose within their environment in order to accomplish specific tasks, especially if they are 
placed in new environments. A common sensor used to detect obstacles is a sonar sensor. This 
sensor operates by sending sound waves, or “pings”, and then returning the time taken for the pulse 
to travel forth and back. From that signal, using an Arduino Uno, we calculated the distance of the 
detected object using half of the time it took for the ping to return and the speed of sound (in either 
centimeters or inches). Specifically, we used the HC-SR04 sonar sensor which is equipped with 
four pins: VCC, GND, ECHO, and TRIG. We hoped to give a probabilistic model of this sonar 
sensor as it moved through an arbitrary grid with objects randomly placed throughout the map; we 
desired to use the varying distances and angles at which the sensor detected an object in order to 
develop a representative, probabilistic model. From the collected data of readings of randomly 
placed objects we determined that no distinguishable distribution of the sonar sensor could be 
determined from a surface and histogram plot of our dataset. Furthermore, we observed that the 
lack of shape to the distribution can be attributed to the uncertainties of the sensor’s measurement 
method which was able to pick up small protrusions in the grid environment in addition to the 
edges of objects that were placed at greater distances. 
 Without introducing much room for human error, we decided to derive our data set from a 
sonar sensor that is fixed within a hemispherical grid and is able to rotate between 0 and 180 
degrees. Within the grid were three randomly placed cylindrical objects that were intended to be 
detected by the HC-SR04 sonar sensor. Also, because the grid was limited to certain dimensions, 
any measurement reading that was beyond the confines of the custom map was defined as an empty 
space (or zero). The data was then organized using and plotted as histogram in Matlab and plotted 
as a bivariate probability distribution using Minitab.  
 Our ultimate takeaway from this experiment is that due to the sensitivity of the sonar 
sensor, as it detects an object, and the uncertainties of the measurements, especially at greater 
distances, a definitive probabilistic model of the sensor could not be attributed to a distinguishable 
distribution and the sensor has is not accurate in differentiating between objects.  
 
Methodologies: 
  

We first devised a map/grid (which was constructed out of large paper) that we would place 
the sensor on. It is assumed that each grid had independent probabilities and the locations of the 
objects in the grid were all random. The hemispherical grid was drawn in a polar coordinate 
fashion, with radii separated 5 degrees from each other to a maximum distance of 70 cm (drawn 
from 0 to 180 degrees). Three cylindrical objects were then placed randomly on the grid, all of 
which were to be intended to be detected by the sonar sensor; we neglect the shape of the grid 
when detecting objects using the sensor because we are only seeking to determine the probabilistic 
locations of objects. A model of this method and the locations of the objects is shown in Figure 
A-1.  
 Next we designed a circuit that would allow us to record the distance readings using the 
HC-SR04, as shown in Figure A-5.  Using an Arduino Uno microcontroller and basic circuit 
components such as switches, resistors, pushbuttons, etc. we built the circuit for the sonar sensor 
on a breadboard platform. The circuit would work by requiring the user to depress a pushbutton 
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which would signal the sonar sensor to make 100 distance readings. An Arduino script (which is 
a variant of C) was written in order to send commands to the sonar sensor to send trigger signals 
and to listen for echoes from any object. In order to store and save the raw data from the sensor 
for analysis, a Python script was written that would take in the serial data readings from the 
microcontroller and write the readings to a file of any name. The execution of the script would 
finish as soon the sonar sensor made 150 readings. 
 Once the sensor (including the rest of the circuit), programs, and grid were all interfaced 
we conducted our data collection method. We positioned the sensor first to 0 degrees and collected 
distance readings, which were stored to a file named “0” using the Python script.  Then the sensor 
was moved to 5 degrees, in which the process was repeated, then 10 degrees, then 15 degrees, and 
so on until 180 degrees was finally reached. In each angular position the sonar sensor collected 
distance data which would indicate the presence of an object. 
 Once all the data was collected from the grid, we utilized Python and Matlab scripts (and 
commands) to first convert the polar coordinate data into rectangular coordinates and organize the 
data from the files into a tabular format to calculate the frequency for each grid location. A Matlab 
script was utilized to create the bin widths for a histogram; we determined to use 50 bins for the 
histogram plot.  The 3-D histogram was then plotted in Matlab using the hist3() function. Then, 
using same frequency (z) data, along with the x and y data, we created smooth curve plots 
(probability plots) of the data using Minitab. We decided to use the graphing capabilities of Matlab 
and Minitab to see how well the sensor was able to collect the objects’ data and to see what sort 
of distribution would fit the probability graph of the sonar sensor data. A 3-D histogram was used 
because we varied both the angular position and the radial distance of the randomly placed objects. 
Certain constraints were placed to take into account pulses that never return to the sonar sensor or 
send erroneous results. Therefore, a maximum limit of 70 cm was set (the radius of our grid) such 
that no object(s) beyond 70 cm would be registered. Any distance greater than this limit was 
arbitrarily registered to be an empty space, i.e. a distance of 0 cm; and all the objects placed on the 
grid were within this upper limit.  
 
Results: 
 
 The raw data of the sonar sensor reading was plotted first in a 3-D histogram against 
varying radial distances and sweeping-angles of the sensor. This graph allowed us to determine 
the likely location of the objects purely based off of sensory data. From this histogram, it can be 
seen that the sensor does not exhibit a noticeable nor unique probability distribution. Using 
Minitab, we fitted a smooth curve which yielded the same shape as the histogram, which also 
showed no distinguishable distribution to the probability of the sensor. The sensor also picked up 
some disturbances (bumps on the surface of grid) which were depicted in both the histogram and 
the probability curve. These unexpected distance readings occurred twice, one very close to the 
sensor and one towards the father, radial end of the hemisphere. These errors also contributed to 
the lack of shape to the probability curve of the sonar sensor readings.  

From the 5500 samples that were collected 3337 of these were pings from the sonar sensor 
indicating that some sort of object has been detected. The events of object 1, object 2, and object 
3 are mutually exclusive and independent because each object was situated in non-overlapping 
locations on the grid and the detection of one of the objects does not affect the chances of the other 
two objects being detected. The probability that our sensor detected one of the randomly placed 
cylindrical objects is calculated as follows:  
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𝐿𝑒𝑡	𝑡	𝑏𝑒	𝑡ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑛𝑔𝑠 

𝐿𝑒𝑡	𝑜1	𝑏𝑒	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑛𝑔𝑠	𝑑𝑢𝑒	𝑡𝑜	𝑜𝑏𝑗𝑒𝑐𝑡	1 
𝐿𝑒𝑡	𝑜2	𝑏𝑒	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑛𝑔𝑠	𝑑𝑢𝑒	𝑡𝑜	𝑜𝑏𝑗𝑒𝑐𝑡	2 
𝐿𝑒𝑡	𝑜3	𝑏𝑒	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑛𝑔𝑠	𝑑𝑢𝑒	𝑡𝑜	𝑜𝑏𝑗𝑒𝑐𝑡	3 

 
𝐿𝑒𝑡	𝑝	𝑏𝑒	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑛𝑔𝑠	𝑡ℎ𝑎𝑡	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑑𝑒𝑡𝑒𝑐𝑡	𝑒𝑖𝑡ℎ𝑒𝑟	𝑜𝑏𝑗𝑒𝑐𝑡	 

 
𝑊𝑒	𝑤𝑎𝑛𝑡	Pr	(𝑒𝑖𝑡ℎ𝑒𝑟	𝑜𝑏𝑗𝑒𝑐𝑡	1, 𝑜𝑏𝑗𝑒𝑐𝑡	2	𝑜𝑟	𝑜𝑏𝑗𝑒𝑐𝑡	3	𝑤𝑒𝑟𝑒	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑) 

 
𝑜1 = 300 
𝑜2 = 450 
𝑜3 = 463 
		𝑡 = 3337 

 
P 𝑜1, 𝑜2, 𝑜𝑟	𝑜3 = P o1 + 	𝑃 𝑜2 + 	𝑃(𝑜3) 

=	
300
3337 +	

450
3337 +

463
3337 

 
P o1, o2, or	o3 =	0.3635 

 
Discussion: 
 The probability surface plots of the sonar sensor readings do not indicate a readily 
identifiable distribution. The two-dimensional bins show the locations where the sensor detected 
some sort of object, irrespective of the shape or size as shown in Figure A-2 and Figure A-3. In 
the first attempt to detect the obstacles in our grid we used angular divisions of 10 degrees instead 
of 5 degrees; and in our Matlab analysis the bin widths were too narrow to capture the variability 
of the distance readings of the sonar sensor. Therefore, we increased the divisions to 5 degrees. 
The height of the bins of the histogram depict the presence of consistent detections of obstacles. 
Although the histogram suggests that there are two large objects in the grid a closer look at it will 
show otherwise. Firstly, it can be observed that there is a region of a supposedly large object around 
135 degrees that has lower probability, as suggested by Figure A-4, which show lower probability-
heights at these locations. In other words, it separates two regions with higher probabilities. Those 
two regions represent the two objects that were situated close to each other. The reason why the 
separation isn’t obvious is because a sonar wave increases in radius as it moves further from its 
source, thus bouncing back from objects that may not be in the same “line of sight”. Therefore, at 
the angles between the objects, the sonar will detect those objects even though they do not lie at 
the respective angle. However, the probabilities of those readings are not greater than as if the 
objects were placed at such an angle, thus we can notice that there are three objects in the whole 
grid, as expected. For all of those reasons, although it can be seen from the probability density 
distribution that there is a probability of an object being in a range of angles that is larger than the 
object itself, the regions where we actually had the objects are very close to the regions where we 
had the highest probabilities of an object being there. 
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The sensor was able to identify vacant grid cells, but the presence of small bins in the 2-D 
distribution show how sensitive the sensor is to small disturbances in our semicircular grid. These 
small locations were due to the slight change in elevation of the paper that was used to construct 
the map. Thus, the bins of noticeably smaller heights are also depicted that indicate the presence 
of small “ridges”. These locations have lower frequencies because the sensor did not consistently 
detect the presence of these obstacles as consistently as the larger cylindrical objects that were 
randomly placed and meant to be detected by the sonar sensor.  

The probability of either object 1, objects 2, or object 3 to be detected indicate the accuracy 
of the sensor. The number of pings due to either of objects were collected by pinpointing the 
location of each object and which grid cells each of the occupied. From there we collected the 
number of pings that the sensor sent to that grid cell, which was yielded as we converted our 
semicircular, polar grid to a two-dimensional Cartesian coordinate grid. A high proportion would 
imply that of the total number of pings detected that a sufficient amount would be attributable to 
the presence of the actual objects, however as shown, only 36.35% of the total pings sent can be 
attributed to either object 1, object 2, or object 3. From this we can say that the sensor that was 
used is quite sensitive but not accurate.  

The primary area of improvement would include constructing a grid that minimizes the 
amount of disturbances as well as use more objects to further test the accuracy of the sensor. A 
larger grid would provide more samples to analyze and determine if an identifiable distribution 
can be fit to the dataset, however as of now the data does not appear to fit a commonly applicable 
distribution. In addition to a more strategic construction of our grid, a method that would control 
angular adjustments to the sensor would yield in more accurate data. The current method employed 
is manual adjustments which employ human error.  
 
 
Conclusion: 
 In this project the task was to develop a probabilistic distribution of an HC-SR04 sonar 
sensor by analyzing data from the sensor as it was swept through a semicircular grid that contained 
three randomly situated objects. Based on the results from computer analysis, using Python, 
Matlab and Minitab, the distribution did not appear to fit any commonly used distributions. The 
accuracy of the sensor was quantified by determining the probability that the times that the correct 
objects were identified out of the total number of times the sensor detected some sort of object. 
This proportion was 0.3635, indicating a low accuracy of the sensor due to its sensitivity. The 
method could be improved by creating a more robust map as well as add more randomly placed 
objects throughout the grid to verify the accuracy, or lack therof, of HC-SR04 sensor. 
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Appendix: 
 

 
 

Figure A-1: Map of grid with surface areas of three randomly placed objects. 
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Figure A-2: Histogram generated by Matlab of sonar distance measurements in semicircular 

grid. 
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Figure A-3: Histogram of sonar distance with actual locations of the three objects.  
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Figure A-4: Probability distribution plot of object detections generated by Minitab.  

	

	
Figure	A-5:	Custom	circuit	used	for	data	acquisition	using	HC-SRO4	and	Arduino	Uno.		
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Abstract 

The purpose of this project was to give students a better understanding on the concepts of 
probability and statistics inside Texas Hold’em Poker. The students first gathered analytical data and 
studied the probabilities of several hands inside the game. A presentation accompanying this report 
demonstrated the results while providing some mathematical laws to prove the data collected was indeed 
satisfactory. The principle of multiplication, the binomial coefficient and combinatorics were the main 
tools utilized by our group to analyze the data. Although the collected results showed accuracy, our group 
did not take into account some other issues inside the game such as bluffing and personal behavior of 
each player on the board. 
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1. Initiation 
 1.1 Background 
 “Poker Texas Hold’em is a variation of the card game of poker. Two cards, known as the hole 
cards or hold cards, are dealt face down to each player, and then five are dealt face up in three stages. The 
stages consist of a series of three cards ("the flop"), later an additional single card ("the turn" or "fourth 
street") and a final card ("the river" or "fifth street"). Each player seeks the best five card poker hand from 
the combination of the community cards and their own hole cards. If a player's best five card poker hand 
consists only of the five community cards and none of the player's hole cards, it is called "playing the 
board". Players have betting options to check, call, raise or fold. Rounds of betting take place before the 
flop is dealt, and after each subsequent deal.” [2] 
 

1.2 Introduction 
The Texas Hold’em Poker is not just about pure luck. This project goes deeper into the 

probabilities inside the game to show how important is for the players to know which hands are more 
common than the others. The more the player knows, the easier it is to develop a successful decision-
making and strategy. To determine which hands are more common, we show different techniques to 
predict the probabilities in certain parts of the game.  

There are two different ways to calculate probabilities in a poker game. The first, that should be 
only applied when the game has first started, is dividing the number of outcomes that satisfy the condition 
being evaluated, by the total number of cards in the game. This calculation will not be valid when the 
deck has no longer 52 cards in it. On the other hand, the second approach is more applicable to the game, 
because it involves conditional probability, and the calculations are updated at every game move.  

This project will examine the likelihood to win a hand analyzing various stages of the game. Our 
group first approached starting hands, breaking it down into single and dominated hands. We focused on 
pocket pairs, which are the most desired hand combinations to start the rounds. For this section, we based 
ourselves on the odds of obtaining each different card combination, without taking into account the 
probability to win the hand. Then, we looked into what changes when the flop, the turn and the river are 
played in the game. With this analysis, we were able to indicate the chances of a successful outcome in 
the game, considering all game stages. We used three mathematical models that explain the probabilities: 
the binomial coefficient, the principle of multiplication and the Monte Carlo algorithm.  

 
2. Methodologies 
 Our group used the website www.cardplayer.com in order to analyze a specific given set of data 
regarding the different combinations of the deck of cards used in the Texas Hold’em Poker game. Our 
data collection includes an analysis of three different scenarios: the starting hands, the flop and the after 
flop. Within the starting hands conditions, we analyzed both single hands and dominated hands with 
pocket pair scenarios. 
 
 2.1 Single Hands w/ Pocket Pair 
 In order to identify how many possible starting hands a single player can have in one round of the 
game, we explicitly calculated its probability using the binomial coefficient rule. If there are 52 different 
cards in the deck, and a player draws two out of the 52, the probability can be calculated by doing 52 nCr 
2. We have found it to be 1,326 different starting hands possibilities. Then, this number was divided into 
subcategories and placed in a table (see Table1 in the Results section) for better understanding. As 
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previously discussed in the Introduction, we analyzed the pocket pair condition for the starting hands. By 
applying the binomial coefficient rule, we discovered the number of possibilities for each hand having a 
suit combination; we calculated it to be 6 since 4 nCr 2 yields this number. Because a deck of cards has 
13 different ranks from A to K (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K), we observed that there are only 13 
pair possibilities. We calculated the amount of possible combinations by applying the multiplication 
principle; this value yielded 78, since 6 x 13 = 78. 

 
2.2 Dominated Hands w/ Pocket pair 
We continued the analysis of the game with the next different condition. A dominated hand is a 

hand that is beaten by another hand and is unlikely to win against it. For the pocket pair case, we observed 
that a dominated hand only occurs when a pocket pair has a higher rank. One can notice that the only way 
a lower rank pocket pair can win against a higher rank pocket pair is if, after the flop, the lower pocket 
pair becomes a three of a kind. For more information on this topic, see the After Flop methodology 
section. In order to find if another player on the table has a higher rank pocket pair, we considered a 
scenario with only two players. The probability that a single opponent has a higher pair can be stated as 
the probability that the first card dealt to the opponent is a higher rank than the pocket pair and the second 
card is the same rank as the first. By subtracting two cards from the deck (the two cards that form the 
pocket pair for the player), the number of cards in the deck decreases to 50. Once the opponent is dealt 
with its first card, there are 49 cards left in the deck, from which 3 have the same rank as the first 
opponent’s card. Observing this pattern, we could develop a formula to find out if a single opponent has a 
higher rank pocket pair. The formula is given below, where R is the rank of the pocket pair: 

Equation 1: 

     𝑃	 = (%&'()	*	&
+,

	𝑥	 .
&/
	  

 
 To verify our expectations and to prove the expressed formula would give the expected results, 
we used the previously discussed website simulator. 
 
 2.3 The Flop 

The flop is the moment of the game when three cards are dealt with the face up to the board. In 
order to calculate the number of possible combinations at the flop, we used the binomial coefficient rule. 
After the player is given two cards from the deck, there are 50 remaining left cards in the deck to be 
played. When the flop occurs, the number of possible combinations are given by applying the binomial 
coefficient 50 nCr 3, which yields to 19,600. This number means that there are 19,600 possible 
combinations after the three cards are dealt with the face-up to the board. 
 Our group then used the principle of multiplication to find out the probability of specific flops in 
the game. In other words, we simply multiply together the probabilities of each of those cards being dealt. 
For example, suppose we want to find out the probability of flopping three A’s. We multiply 4 aces over 
the 50 remaining cards, then we have only 3 aces left, divided by 49 remaining cards and so on, as seen 
bellow: 
 

(4/50) ∗ (3/49) ∗ (2/48) 	= 0.02048%.  
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 2.4 The After-Flop (Turn and River) 
Similarly, we applied the binomial coefficient rule to find out the number of possible 

combinations for the turn and the river. The turn happens when a fourth card from the deck is dealt with 
the face-up to the board. Similarly, the river occurs when a fifth card is faced up to the board. Those 
numbers were calculated to be 230,300 (50 nCr 4) and 2,118,760 (50 nCr 5), respectively. As one may 
notice, as the number of cards on the board increases, the chances of making a game also increases, due to 
the fact that more combinations can yield from five cards on the table comparing to four.  
 
 2.5 Monte-Carlo Algorithm 

Our group used the Monte-Carlo algorithm to simulate/ plot simple rounds of the game not taking 
into consideration the suits and for a single deal of five cards with no draw. We only simulate a game for 
four different kinds of outcome combinations: a pair, three-of-a-kind and four-of-a-kind. The code works 
in the following way: it first generates the whole deck of cards with the 52 cards. Then it create a matrix 
to store the probability of the three different combinations previously mentioned; it randomizes the card 
vector (shuffles the deck) and deals a set of 5 cards to 4 players (in the algorithm, we don’t consider the 
effects of the flop and randomly gives 5 cards to each player in the beginning of the game). The algorithm 
then counts the cards in each hand to look for pairs, three-of-a-kind and four-of-a-kind. Finally, it plots 
the results of the simulation. 

The results for the simulation can be seen in the Results section and the MATLAB code can be 
seen in the Appendix.  
 

3. Results 
 
3.1 Single Hand 
 
 Table 1: Single Hand probability 

Single Hand Number of hands Combination of 
suits 

Total possible 
combinations 

Probability 

Pocket Pair 13 6 78 5.8% 

 
 
As shown in Table 1, there are 13 different types of pocket pairs (AA, KK, QQ, JJ, 10s, 9s, 8s, 7s, 6s, 4s, 
3s and 2s). With all suits (spades, hearts, diamonds and clubs), we have a combination 13 x 4nCr2, 
yielding 78 different combinations. Then, dividing 78 by 1326, which is the total possible starting hand 
combinations (52 nCr 2), we have a 5.8% probability to start off the game with a pair.  
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3.2 Dominated Hands 
 

 
Figure 1: Chart showing how likely it is to win the hand with each combination 
 

Exploring the formula shown in section 2.2, imagine a situation where 2 players face each other 
in the game: the first player has a Q-Q, but do not know that the second player has a 6-6. According to 
formula 1, we substitute r = 12 for the queens and r = 6 for the pair of 6. The probability that player 1 will 
face a larger pair will be 0.98%, while player 2 will face a 3.92%. Now, we see that the first player has a 
more playable hand, as confirmed in Figure 1.  
 
3.3 The flop  
 
 Analyzing the results, we have Table 2 below with some examples that show how the hands will 
change after the flop: 
 
Table 2: Probabilities to combine certain cards, given a 10-J Hearts: 

Hand Probability 

Royal Street Flush (1/50)*(1/49)*(1/48)x100% = 0.00085% 

Four of a kind (6/50)*(2/49)*(1/48) x100%= 0.01% 

Flush (12/50)*(11/49)*(10/48) x100%= 1.12% 

Full House ( assuming a pocket pair ) (4/50)*(3/49)*(2/48) x100%= 0.02% 

Higher Simple Sequence (4/50)*(4/49)*(4/48)x100% = 0.054% 
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 Of course these probabilities only show what can be done with the first three open cards on the 
table, but this is only a demonstration to show how to calculate the probabilities, and to mention that it is 
curious that it is more likely to obtain a flush than a sequence in this situation, given the flush is more 
valuable.  
 
3.4 Turn and River 
 
 Similarly, the after-flop probability will follow the same procedure done in section 3.3. However, 
there are a lot of different ways to calculate the chances, since we necessarily have to take into account 
what was done in the flop. With that in mind, there are thousands of hundreds of combinations after what 
happened when the first three table cards are opened.   
 
 
3.5 Monte-Carlo Algorithm  
 

 
Figure 2 and 3: Monte-Carlo simulation on Matlab showing two different random hands.  
 
 As shown above, the Monte-Carlo algorithm simulated two different random hands. From both 
figures, we see that the probability of getting a Pair is around 50% overall, less than 5% for a Three-of-kind, 
and insignificant chances for a Four-of-kind.  
 
 
4. Discussion 
 Throughout the whole project, our group verified the importance of probability and statistics in 
Texas Hold’em Poker. The binomial coefficient rule provided an overall efficient analysis of the entire 
game, from exploring the probability of the starting hands to the possibilities in the flop, turn and river. 
 It was not surprising to see that according to the Monte-Carlo Algorithm, the chances of getting a 
pair are way higher than a four-of-a-kind. Our group observed that after running several simulations in 
MATLAB, the scenarios above were those that occurred more often. We also can see that for a random 
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shuffled deck of cards, a player can have higher chances of winning a game than the others, which makes 
the game more interesting and fascinating. 

Our research does have problems, because the Texas Hold’em Poker is an extremely complicated 
game that has a lot more variances than those we approached. For example, our group only assumed the 
probabilities based on the card that were not utilized by a single player, and that is not the complete truth, 
since there are cards with other players and discarded cards. However, we reasonably based our 
assumptions on how the player has to see the game, taking into account that any card can be discarded or 
be in someone else’s hand. 

Another problem seen in the project was that we did not consider human’s interactions that 
influence the game. Our calculations were strictly mathematics, and we could not foresee how players 
bluffing would affect the emotional of each player, compromising their likelihood to win.  

Lastly, we did not use any Binomial Distributions, as the group stated on the preliminary report. 
However, we did use the binomial coefficient to show all calculations regarding the probabilities as 
shown in the methodologies section. In addition to this mathematical model, we observed that the Monte-
Carlo algorithm fails to calculate a lot of different kinds of hands. The code used on MATLAB is only 
capable of demonstrating probabilities for pairs, three and four of a kind.  
 
5. Conclusion 
 We observed that, even though all the probabilities found are very low, it is possible to develop a 
relatively strategy based on them. Since Poker is a card game, and it is not designed to yield “successes” 
all the time, knowing the odds can be helpful to situate the player in the game, making players who are 
unfamiliar with the subject to have an educated guess on whether or not they should call. If the bet is 
large, they may feel that it is too expensive to try and catch the right card, but if the bet is small they will 
be more inclined to call. The key to improve decision-making and strategy is to have in mind what are the 
chances to form combinations with what the player has in hands. So, we concluded that the most 
important part of the game is the starting hand, since it will determine the course of the game. 
 The results showed that starting a hand with a pocket pair is probably the best way to start the 
game, because more valuable types of combinations can be easier formed from it. For example, it is easier 
to form a full house starting with a pocket pair than starting with two different random cards. It also 
showed that a flush can be easier achieved if the player starts with a pocket pair of suits. 

In the end, we agreed that doing this kind of detailed analysis is hard to do while in the middle of 
a hand. However, doing it later, away from the table, helps clarify the likely reality of what was going on 
in the game. 
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Appendix 
 
% Monte Carlo Generation of Poker Hand Probability 
% Simple example with no suits, and a single deal of five cards with no 
% draw. Only looking at pairs, three-of-a-kinds and four-of-a-kinds. 
 

% Generate all cards in the deck 

oneSuit  = 1:13; 

deck     = repmat(oneSuit,1,4); 

numCards = numel(deck); 

% Run Monte Carlo Simulations 

% Effectively play large number of hands to determine probabilities 

numSimulations = 1000; 

numPlayers     = 4; 

numCardsDealt  = 5; 

% Create matrix to store pairs, etc. for each player 

% Three rows as this code only counts pairs, three-of-a-kinds,  

% and four-of-a-kinds. 

handsTotal     = zeros(3,numPlayers); 

for i = 1:numSimulations, 

% Randomize card vector, "shuffle the deck" 

  shuffleIndex = randperm(numCards); 

  deckShuffled = deck(shuffleIndex); 

% Deal hands (5x cards a player) 

  dealCards = deckShuffled(1:numPlayers*numCardsDealt); 

  dealCards = reshape(dealCards,numPlayers,numCardsDealt); 

% Count the cards in each hand 

  cardCount = histc(dealCards',oneSuit); 

% Count singletons, pairs, etc. Eliminate singletons and no card counts 

  handCount = histc(cardCount,0:4); 

  handCount = handCount(3:end,:); 
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% Add counts from this deal to overall count 

  handsTotal = handsTotal + handCount; 

end 

% Plot results 

figure; 

subplot(2,1,1) 

bar(handsTotal./numSimulations); 

grid on; 

title('Hand Probability per Player'); 

ylabel('Probablity') 

set(gca,'XTick',1:3,'XTickLabel',{'Pair','Three-of-kind',... 

    'Four-of-kind'}); 

 

subplot(2,1,2) 

bar(sum(handsTotal,2)./(numSimulations*numPlayers)); 

grid on; 

title('Overall Hand Probability'); 

ylabel('Probability') 

set(gca,'XTick',1:3,'XTickLabel',{'Pair','Three-of-kind',... 

    'Four-of-kind'}); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

60



Math 3320

Group 5: Davi Dias, Joao Marques

Project’s Report Feedback

Required Sections Maximum Grade Your grade My comments

Introduction 15 13 Well written except for

some obvious typos

Statement of the Problem 25 20 This was embedded in the

introduction and should

have been separated from it

Methodology 25 25 Well explained except for

some confusion in the mean-

ing of Q-Q in Q- Q Plot.

It means Quantile Quantile

plot, not Quartile-Quartile.

Quantile refers to quarters

only whereas quantile refers

to percent.

Results 25 25 Well explained as well. You

had a good understanding

of the limitation of your own

method

Bibliography 10 10 Well done

Other comments A title for your project is

missing

Total 100 93

61



Project’s Presentation Feedback

Required Sections Maximum Grade Your grade My comments

Be properly attired 5 3 Davi was not properly at-

tired

Comments of another pre-

sentation

35 30 Well done

Chemistry among group

members

20 10 You need an improvement

there.

Timely submission of the

presentation

20 20 You submitted your mile-

stones on time

Pass all 4 Milestones 20 20 Well done

Other comments Your video was a bit blurry

and sketchy

Total 100 83

62



 

 

 
Trinity University 

________________________________________________ 
 

Probability and Statistics for Engineers & Scientists 
Semester Project Report 

Group #5 
 

Group Members: Davi Dias and Joao Marques 
Faculty Advisor: Dr. Eddy Kwessi 

 
 
 
 
 
 
 
 
 
 
 
 
Abstract 

The purpose of this project was to give students a better understanding on the concepts of 
probability and statistics inside Texas Hold’em Poker. The students first gathered analytical data and 
studied the probabilities of several hands inside the game. A presentation accompanying this report 
demonstrated the results while providing some mathematical laws to prove the data collected was indeed 
satisfactory. The principle of multiplication, the binomial coefficient and combinatorics were the main 
tools utilized by our group to analyze the data. Although the collected results showed accuracy, our group 
did not take into account some other issues inside the game such as bluffing and personal behavior of 
each player on the board. 
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1. Initiation 
 1.1 Background 
 “Poker Texas Hold’em is a variation of the card game of poker. Two cards, known as the hole 
cards or hold cards, are dealt face down to each player, and then five are dealt face up in three stages. The 
stages consist of a series of three cards ("the flop"), later an additional single card ("the turn" or "fourth 
street") and a final card ("the river" or "fifth street"). Each player seeks the best five card poker hand from 
the combination of the community cards and their own hole cards. If a player's best five card poker hand 
consists only of the five community cards and none of the player's hole cards, it is called "playing the 
board". Players have betting options to check, call, raise or fold. Rounds of betting take place before the 
flop is dealt, and after each subsequent deal.” [2] 
 

1.2 Introduction 
The Texas Hold’em Poker is not just about pure luck. This project goes deeper into the 

probabilities inside the game to show how important is for the players to know which hands are more 
common than the others. The more the player knows, the easier it is to develop a successful decision-
making and strategy. To determine which hands are more common, we show different techniques to 
predict the probabilities in certain parts of the game.  

There are two different ways to calculate probabilities in a poker game. The first, that should be 
only applied when the game has first started, is dividing the number of outcomes that satisfy the condition 
being evaluated, by the total number of cards in the game. This calculation will not be valid when the 
deck has no longer 52 cards in it. On the other hand, the second approach is more applicable to the game, 
because it involves conditional probability, and the calculations are updated at every game move.  

This project will examine the likelihood to win a hand analyzing various stages of the game. Our 
group first approached starting hands, breaking it down into single and dominated hands. We focused on 
pocket pairs, which are the most desired hand combinations to start the rounds. For this section, we based 
ourselves on the odds of obtaining each different card combination, without taking into account the 
probability to win the hand. Then, we looked into what changes when the flop, the turn and the river are 
played in the game. With this analysis, we were able to indicate the chances of a successful outcome in 
the game, considering all game stages. We used three mathematical models that explain the probabilities: 
the binomial coefficient, the principle of multiplication and the Monte Carlo algorithm.  

 
2. Methodologies 
 Our group used the website www.cardplayer.com in order to analyze a specific given set of data 
regarding the different combinations of the deck of cards used in the Texas Hold’em Poker game. Our 
data collection includes an analysis of three different scenarios: the starting hands, the flop and the after 
flop. Within the starting hands conditions, we analyzed both single hands and dominated hands with 
pocket pair scenarios. 
 
 2.1 Single Hands w/ Pocket Pair 
 In order to identify how many possible starting hands a single player can have in one round of the 
game, we explicitly calculated its probability using the binomial coefficient rule. If there are 52 different 
cards in the deck, and a player draws two out of the 52, the probability can be calculated by doing 52 nCr 
2. We have found it to be 1,326 different starting hands possibilities. Then, this number was divided into 
subcategories and placed in a table (see Table1 in the Results section) for better understanding. As 
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previously discussed in the Introduction, we analyzed the pocket pair condition for the starting hands. By 
applying the binomial coefficient rule, we discovered the number of possibilities for each hand having a 
suit combination; we calculated it to be 6 since 4 nCr 2 yields this number. Because a deck of cards has 
13 different ranks from A to K (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K), we observed that there are only 13 
pair possibilities. We calculated the amount of possible combinations by applying the multiplication 
principle; this value yielded 78, since 6 x 13 = 78. 

 
2.2 Dominated Hands w/ Pocket pair 
We continued the analysis of the game with the next different condition. A dominated hand is a 

hand that is beaten by another hand and is unlikely to win against it. For the pocket pair case, we observed 
that a dominated hand only occurs when a pocket pair has a higher rank. One can notice that the only way 
a lower rank pocket pair can win against a higher rank pocket pair is if, after the flop, the lower pocket 
pair becomes a three of a kind. For more information on this topic, see the After Flop methodology 
section. In order to find if another player on the table has a higher rank pocket pair, we considered a 
scenario with only two players. The probability that a single opponent has a higher pair can be stated as 
the probability that the first card dealt to the opponent is a higher rank than the pocket pair and the second 
card is the same rank as the first. By subtracting two cards from the deck (the two cards that form the 
pocket pair for the player), the number of cards in the deck decreases to 50. Once the opponent is dealt 
with its first card, there are 49 cards left in the deck, from which 3 have the same rank as the first 
opponent’s card. Observing this pattern, we could develop a formula to find out if a single opponent has a 
higher rank pocket pair. The formula is given below, where R is the rank of the pocket pair: 

Equation 1: 

     𝑃	 = (%&'()	*	&
+,

	𝑥	 .
&/
	  

 
 To verify our expectations and to prove the expressed formula would give the expected results, 
we used the previously discussed website simulator. 
 
 2.3 The Flop 

The flop is the moment of the game when three cards are dealt with the face up to the board. In 
order to calculate the number of possible combinations at the flop, we used the binomial coefficient rule. 
After the player is given two cards from the deck, there are 50 remaining left cards in the deck to be 
played. When the flop occurs, the number of possible combinations are given by applying the binomial 
coefficient 50 nCr 3, which yields to 19,600. This number means that there are 19,600 possible 
combinations after the three cards are dealt with the face-up to the board. 
 Our group then used the principle of multiplication to find out the probability of specific flops in 
the game. In other words, we simply multiply together the probabilities of each of those cards being dealt. 
For example, suppose we want to find out the probability of flopping three A’s. We multiply 4 aces over 
the 50 remaining cards, then we have only 3 aces left, divided by 49 remaining cards and so on, as seen 
bellow: 
 

(4/50) ∗ (3/49) ∗ (2/48) 	= 0.02048%.  
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 2.4 The After-Flop (Turn and River) 
Similarly, we applied the binomial coefficient rule to find out the number of possible 

combinations for the turn and the river. The turn happens when a fourth card from the deck is dealt with 
the face-up to the board. Similarly, the river occurs when a fifth card is faced up to the board. Those 
numbers were calculated to be 230,300 (50 nCr 4) and 2,118,760 (50 nCr 5), respectively. As one may 
notice, as the number of cards on the board increases, the chances of making a game also increases, due to 
the fact that more combinations can yield from five cards on the table comparing to four.  
 
 2.5 Monte-Carlo Algorithm 

Our group used the Monte-Carlo algorithm to simulate/ plot simple rounds of the game not taking 
into consideration the suits and for a single deal of five cards with no draw. We only simulate a game for 
four different kinds of outcome combinations: a pair, three-of-a-kind and four-of-a-kind. The code works 
in the following way: it first generates the whole deck of cards with the 52 cards. Then it create a matrix 
to store the probability of the three different combinations previously mentioned; it randomizes the card 
vector (shuffles the deck) and deals a set of 5 cards to 4 players (in the algorithm, we don’t consider the 
effects of the flop and randomly gives 5 cards to each player in the beginning of the game). The algorithm 
then counts the cards in each hand to look for pairs, three-of-a-kind and four-of-a-kind. Finally, it plots 
the results of the simulation. 

The results for the simulation can be seen in the Results section and the MATLAB code can be 
seen in the Appendix.  
 

3. Results 
 
3.1 Single Hand 
 
 Table 1: Single Hand probability 

Single Hand Number of hands Combination of 
suits 

Total possible 
combinations 

Probability 

Pocket Pair 13 6 78 5.8% 

 
 
As shown in Table 1, there are 13 different types of pocket pairs (AA, KK, QQ, JJ, 10s, 9s, 8s, 7s, 6s, 4s, 
3s and 2s). With all suits (spades, hearts, diamonds and clubs), we have a combination 13 x 4nCr2, 
yielding 78 different combinations. Then, dividing 78 by 1326, which is the total possible starting hand 
combinations (52 nCr 2), we have a 5.8% probability to start off the game with a pair.  
 
 
 
 
 
 
 
 

67



 

 

3.2 Dominated Hands 
 

 
Figure 1: Chart showing how likely it is to win the hand with each combination 
 

Exploring the formula shown in section 2.2, imagine a situation where 2 players face each other 
in the game: the first player has a Q-Q, but do not know that the second player has a 6-6. According to 
formula 1, we substitute r = 12 for the queens and r = 6 for the pair of 6. The probability that player 1 will 
face a larger pair will be 0.98%, while player 2 will face a 3.92%. Now, we see that the first player has a 
more playable hand, as confirmed in Figure 1.  
 
3.3 The flop  
 
 Analyzing the results, we have Table 2 below with some examples that show how the hands will 
change after the flop: 
 
Table 2: Probabilities to combine certain cards, given a 10-J Hearts: 

Hand Probability 

Royal Street Flush (1/50)*(1/49)*(1/48)x100% = 0.00085% 

Four of a kind (6/50)*(2/49)*(1/48) x100%= 0.01% 

Flush (12/50)*(11/49)*(10/48) x100%= 1.12% 

Full House ( assuming a pocket pair ) (4/50)*(3/49)*(2/48) x100%= 0.02% 

Higher Simple Sequence (4/50)*(4/49)*(4/48)x100% = 0.054% 
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 Of course these probabilities only show what can be done with the first three open cards on the 
table, but this is only a demonstration to show how to calculate the probabilities, and to mention that it is 
curious that it is more likely to obtain a flush than a sequence in this situation, given the flush is more 
valuable.  
 
3.4 Turn and River 
 
 Similarly, the after-flop probability will follow the same procedure done in section 3.3. However, 
there are a lot of different ways to calculate the chances, since we necessarily have to take into account 
what was done in the flop. With that in mind, there are thousands of hundreds of combinations after what 
happened when the first three table cards are opened.   
 
 
3.5 Monte-Carlo Algorithm  
 

 
Figure 2 and 3: Monte-Carlo simulation on Matlab showing two different random hands.  
 
 As shown above, the Monte-Carlo algorithm simulated two different random hands. From both 
figures, we see that the probability of getting a Pair is around 50% overall, less than 5% for a Three-of-kind, 
and insignificant chances for a Four-of-kind.  
 
 
4. Discussion 
 Throughout the whole project, our group verified the importance of probability and statistics in 
Texas Hold’em Poker. The binomial coefficient rule provided an overall efficient analysis of the entire 
game, from exploring the probability of the starting hands to the possibilities in the flop, turn and river. 
 It was not surprising to see that according to the Monte-Carlo Algorithm, the chances of getting a 
pair are way higher than a four-of-a-kind. Our group observed that after running several simulations in 
MATLAB, the scenarios above were those that occurred more often. We also can see that for a random 
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shuffled deck of cards, a player can have higher chances of winning a game than the others, which makes 
the game more interesting and fascinating. 

Our research does have problems, because the Texas Hold’em Poker is an extremely complicated 
game that has a lot more variances than those we approached. For example, our group only assumed the 
probabilities based on the card that were not utilized by a single player, and that is not the complete truth, 
since there are cards with other players and discarded cards. However, we reasonably based our 
assumptions on how the player has to see the game, taking into account that any card can be discarded or 
be in someone else’s hand. 

Another problem seen in the project was that we did not consider human’s interactions that 
influence the game. Our calculations were strictly mathematics, and we could not foresee how players 
bluffing would affect the emotional of each player, compromising their likelihood to win.  

Lastly, we did not use any Binomial Distributions, as the group stated on the preliminary report. 
However, we did use the binomial coefficient to show all calculations regarding the probabilities as 
shown in the methodologies section. In addition to this mathematical model, we observed that the Monte-
Carlo algorithm fails to calculate a lot of different kinds of hands. The code used on MATLAB is only 
capable of demonstrating probabilities for pairs, three and four of a kind.  
 
5. Conclusion 
 We observed that, even though all the probabilities found are very low, it is possible to develop a 
relatively strategy based on them. Since Poker is a card game, and it is not designed to yield “successes” 
all the time, knowing the odds can be helpful to situate the player in the game, making players who are 
unfamiliar with the subject to have an educated guess on whether or not they should call. If the bet is 
large, they may feel that it is too expensive to try and catch the right card, but if the bet is small they will 
be more inclined to call. The key to improve decision-making and strategy is to have in mind what are the 
chances to form combinations with what the player has in hands. So, we concluded that the most 
important part of the game is the starting hand, since it will determine the course of the game. 
 The results showed that starting a hand with a pocket pair is probably the best way to start the 
game, because more valuable types of combinations can be easier formed from it. For example, it is easier 
to form a full house starting with a pocket pair than starting with two different random cards. It also 
showed that a flush can be easier achieved if the player starts with a pocket pair of suits. 

In the end, we agreed that doing this kind of detailed analysis is hard to do while in the middle of 
a hand. However, doing it later, away from the table, helps clarify the likely reality of what was going on 
in the game. 
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Appendix 
 
% Monte Carlo Generation of Poker Hand Probability 
% Simple example with no suits, and a single deal of five cards with no 
% draw. Only looking at pairs, three-of-a-kinds and four-of-a-kinds. 
 

% Generate all cards in the deck 

oneSuit  = 1:13; 

deck     = repmat(oneSuit,1,4); 

numCards = numel(deck); 

% Run Monte Carlo Simulations 

% Effectively play large number of hands to determine probabilities 

numSimulations = 1000; 

numPlayers     = 4; 

numCardsDealt  = 5; 

% Create matrix to store pairs, etc. for each player 

% Three rows as this code only counts pairs, three-of-a-kinds,  

% and four-of-a-kinds. 

handsTotal     = zeros(3,numPlayers); 

for i = 1:numSimulations, 

% Randomize card vector, "shuffle the deck" 

  shuffleIndex = randperm(numCards); 

  deckShuffled = deck(shuffleIndex); 

% Deal hands (5x cards a player) 

  dealCards = deckShuffled(1:numPlayers*numCardsDealt); 

  dealCards = reshape(dealCards,numPlayers,numCardsDealt); 

% Count the cards in each hand 

  cardCount = histc(dealCards',oneSuit); 

% Count singletons, pairs, etc. Eliminate singletons and no card counts 

  handCount = histc(cardCount,0:4); 

  handCount = handCount(3:end,:); 
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% Add counts from this deal to overall count 

  handsTotal = handsTotal + handCount; 

end 

% Plot results 

figure; 

subplot(2,1,1) 

bar(handsTotal./numSimulations); 

grid on; 

title('Hand Probability per Player'); 

ylabel('Probablity') 

set(gca,'XTick',1:3,'XTickLabel',{'Pair','Three-of-kind',... 

    'Four-of-kind'}); 

 

subplot(2,1,2) 

bar(sum(handsTotal,2)./(numSimulations*numPlayers)); 

grid on; 

title('Overall Hand Probability'); 

ylabel('Probability') 

set(gca,'XTick',1:3,'XTickLabel',{'Pair','Three-of-kind',... 

    'Four-of-kind'}); 
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1. Introduction 
In the era of digital information, image acquisition and transfer has become a ubiquitous 

necessity. From the millions of photos uploaded every day to social media, as well as 
professional photos taken by scientists such as biologists, geologists, and astronomers, 
photographic images have become increasingly indispensable. The subject matter is widely 
disparate and varied. The mobile phone industry continually promotes the clarity and pixel 
density of their cameras to their consumer base; professional photographers spend years 
learning various softwares to enhance their photos or ensure fidelity to the subject; astronomers 
give a lot of importance to image quality in their study of astral bodies. Issues of fidelity all stem 
from noise, and understanding its physical origins allows the development of techniques for 
minimization. 

The goal of this project is, as stated, the minimization of noise rather than its total 
elimination. Complete elimination encounters the problem of diminishing returns: although it is 
possible to completely remove noise from an image, it would require a much larger sample size 
than is strictly necessary to clean up an image to a reasonable degree. Noise of all kinds arises 
from statistical fluctuations of various origins, and although statistics is a powerful tool it cannot 
predict individual outcomes of fundamentally random processes. We see several examples of 
this limitation in physics: the statistical methods underlying quantum mechanics cannot predict 
what a single measurement will yield. Statistical mechanics cannot predict the motion of a single 
particle in a gas. Despite problems of randomness, we can measure emergent trends once the 
sample size grows large, and we can begin to isolate the physical origins of data fluctuations. 

The scope of this project includes only four types of noise despite the large catalog of 
potential statistical errors. Our analysis focused on uniform, gaussian, poisson, and spike 
(colloquially known as “salt-and-pepper”) noise. These four were chosen because they are the 
most common types, and their mathematical underpinnings and physical sources are well 
understood. With this in mind, we aim to examine the efficacy of averaging out different sources 
of noise in an image by applying noise according to known distributions, summing over 
combinations of 1, 2, 3, up to 100 images, and analyzing the speed at which we return to the 
original image. 
 

1.1 Uniform Noise 
Uniform noise arises due to transcriptions of essentially continuous elements 

(information flow from the real world) onto a discrete receptor (the CCD of a camera or the 
pixels on a screen). Overlap of border elements falls victim to attempted smoothing, and can be 
seen prominently in low-resolution cameras. Its mathematical description follows a uniform 
distribution, which is a continuous function. 

The uniform distribution has a constant probability density function within a specified 
range. This distribution is given by 

 
        a1

b−a < x < b  
           otherwise   0  
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where b is the upper bound of the specified range and a is the lower bound. The variable x can 
be any real number since the distribution is continuous over the interval from a to b.  
 
Obviously, the mean  is the average of a and b, calculated by:μ   

 μ = 2
a+b  

The variance of the standard deviation is also straightforward to calculate, and is given by 
ar(x) (b )V =  1

12 − a 2  
Therefore, the standard deviation is 

 σ = √ (b )1
12 − a 2  
 

1.2 Gaussian Noise 
Gaussian noise, from the Gaussian or Normal distribution,  is commonly seen in digital 

images. Contributors to Gaussian noise primarily include thermal vibrations, since the atomic or 
molecular constituents of thermal vibrations will at any time be moving randomly and interfering 
with the motion of electrons seeking to display an image. We observe Gaussian noise arising 
from thermal vibrations in the atoms of conductors, blackbody radiation from any source of heat, 
and in the large-scale limit of shot noise. Shot noise, however, primarily follows a Poisson 
distribution, which we will consider separately.  

The Gaussian distribution has a probability density function described by  
(x) eP =  1

σ√2π
−(x−μ)/(2σ )2  

where  is the center mean, and  is the standard deviation, which quantifies the spread of theμ  σ  
distribution. The variable x can be any real number since the distribution is continuous and 
extends to positive and negative infinity. The mean can also be any real number, but the 
standard deviation must have a positive value. Note that the mean and standard deviations are 
defined explicitly in the probability density function for the Gaussian distribution, so unlike the 
uniform distribution, additional calculations are not required to customize these parameters. 
The graph of the Gaussian distribution is the bell curve, which is shown below.  
 

1.3 Poisson Noise 
Poisson noise is a fairly common discrete distribution. As mentioned above, its primary 

physical origin is fluctuations in the number of photons sensed by the receptor at any time: 
although the numbers are massive, the detector will never register a fraction of a photon, 
yielding a discrete distribution. Poisson noise is thus often called shot noise, which also 
encompasses measures of current (which is comprised of discrete electrons). The distribution is 
always positive, since measuring negative photons (or electrons) is impossible, and each 
measured event is independent of all the others. It begins to approximate a Gaussian at high 
intensity levels, so the Poisson is often considered the positive low-mean limit Gaussian. 
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The mathematical formulation of the Poisson distribution is given by 

 
where 𝜇 is the mean and e is the base of the natural logarithm. The positive and discrete nature 
is extracted from the factorial term in the denominator, since the factorial of a negative number 
is undefined, and fractional factorials cannot be done without the aid of the gamma function. In 
keeping with the requirement that valid probability distributions must go to zero at infinity, we 
note that the factorial term increases much faster than 𝜇​x​. Additionally, the distribution fulfills the 
requirement that the enclosed area must equal 1. In the necessary summation from x = 0 to 
infinity, Σ𝜇​x​/x! is simply a definition of e​𝜇​, which then multiplies with e​-𝜇​ to yield 1.  

The Poisson function arises from the binomial distribution: 

 
where N is the number of trials and p is the probability of a successful trial. By taking the limit of 
this function in the case of very large N and utilizing Stirling’s approximation for large factorial 
arguments, the formulation of the Poisson distribution emerges. 

Since the exponential contains a negative argument, the curve slopes down after 
passing the peak value at the mean. When plotted, the curve resembles a Gaussian squished 
against the y-axis. For a small mean, the peak is very close to the y-axis and the curve begins 
sloping down almost immediately. As the mean increases the peak moves away from the y-axis, 
creating a small tail and approaching a Gaussian form when the mean becomes large. Also of 
note is the peak value: as the mean increases, the peak decreases as more nonzero values 
become enclosed under the right-shifting curve. 

It is trivial to obtain the variance since it is simply equal to the mean. Likewise, since the 
standard deviation is the square root of the variance, in this case it simply equals the square 
root of the mean. The interconnectedness of the parameters demonstrates that only a single 
value is required to characterize the curve completely and determine the probability of events 
that correspond to a Poisson distribution. 
 

1.4 Spike Noise 
Salt-and-pepper noise gets its name from the scattering of saturated and empty pixels 

on an image. Typically one will observe saturated pixels in dark areas and empty pixels in bright 
areas, as if tossing pinches of salt and pepper across the image. Spike noise is caused by bit 
transmission errors and analog-to-digital conversion errors. Its mathematics follow a probability 
tree instead of a statistical distribution. Pixels will become saturated or empty with a certain 
probability, and remain as measured otherwise. The mathematical analysis of this type of noise 
is discussed in the procedure section.  
 

1.5 Sampling Distributions and the Central Limit Theorem 
This project analyzes the effect of sampling many times from four known probability 

distributions. ​When averaging many noisy images, each pixel basically takes the mean noise 
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sampled from each distribution and adds it to the original pixel value. The composite image, 
being a grid of many pixels, therefore constitutes a sampling distribution of the mean.  
The mean of this sampling distribution remains the same as the population mean, regardless of 
the sample size or the population distribution, which means 

μ  μx =   
where  is the population mean and  is the mean of the sample distribution. The effectiveμ μx  
standard deviation of the sample population is given by 

σx = σ
√n  

where ​is the standard deviation of the population and n is the sample size. This shows thatσ  
as we average many images, the total noise of the composite will converge to the population 
mean.  

While we examine each noise type separately, after many iterations of averaging, the 
sampling distributions begin to behave similarly. Despite the seeming oddity of this 
convergence, it can be explained by a striking result from the field of statistics: the Central Limit 
Theorem. This theorem states​ that distributions of sample averages will converge to fit a normal 
distribution as the sample size increases, regardless of the distribution of the original population. 
 

2. Methodology 
For each of these distributions, we used Matlab to generate random noise and added 

the noise to a clear image, shown in Figure 1 and Figure 2. We varied the number of noisy 
images and averaged over the set of these to create a composite image. By varying the size of 
the set, we studied how quickly each type of noise could be removed by this process.  

 
Figure 1.​ ​First clean image         ​ Figure 2. ​Second clean image 
 

First, the image was loaded into Matlab as an array of integer pixel values between 0, 
which corresponds to a black pixel, and 255, which corresponds to a white pixel. We can 
represent the original image as a matrix where x and y are the coordinates of a pixel.(x, )  f y  
From our probability distribution of choice (Gaussian, Uniform, or Poisson), we create an array 
of zero-mean random noise, the same size as our clean image. We denote this array as .(x, )  ηi y  
Each noisy image is simply the sum of the noise and the original image, or 
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(x, ) (x, ) (x, )  gi y = f y + ηi y  
 
When generating Gaussian noise, we used the Matlab function normrnd to select 

random numbers from a normal distribution centered at zero with a standard distribution of 50. 
When generating uniform noise, we used the Matlab function rand to select a random double 
between 0 and 1 from a uniform distribution, multiplied this value by 173.2 to achieve the same 
variance that we used for the Gaussian distribution, and subtracted 86.6 to maintain a mean 
noise value of zero. To generate Poisson noise, we used the Matlab function poissrnd with a 
lambda value of 2500, which is 50​2​ because it gave us a standard deviation of 50, also matching 
our choice for Gaussian noise. We subtracted 2500, again to maintain a mean noise value of 
zero. 

The spike noise is generated differently. For each pixel, we took a random value (x, )  r y  
between 0 and 1 from a uniform distribution, and the noised pixel was determined based on a 
probability tree, as follows:  
 
 

                if  r(x , )  0 ′ y′ < ε  
55            if  r(x , )  2 ′ y′ > 1 − ε  
(x , )      otherwise  f ′ y′  

 
 
where  was manually selected in order to generate our individual images with a noise standard ε  
deviation of 50 to match the other distributions. We found that the spike noise was most 
comparable to the noise from the other distributions at , so we chose this value for.065  ε = 0  
analysis.  

We generated 100 individual images with noise generated from each of the four 
distributions. Then, we began averaging multiple images together by computing  

(x, ) (x, )g y = n
1 ∑
n

i=1
gi y  

where n is the number of noisy images that contributed to each average. We varied the number 
of images between 2 to 100 and captured the composite figures.  

We analyzed each of these images first by comparing them to the original clear image, 
to determine qualitatively whether averaging was an effective way to minimize noise. Next, we 
generated histograms to show the sampling distributions of the mean for each value of n. This 
allowed us to visually examine whether our results were congruent with the Central Limit 
Theorem, as we hypothesized. Finally, we computed the standard deviations of the composite 
noise for our various sample sizes and compared them to theoretical values. The composite 
noise was calculated by 

η(x, ) (x, ) y = n
1 ∑
n

i=1
ηi y  

or equivalently,  
(x, ) (x, ) (x, )  η y = g y − f y  

The second form is necessary to compute the effective noise from the Spike noise composites. 
The standard deviation of every pixel’s noise was determined, and compared to the expected 
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value of .​ We do this in order to quantify the clarity of the composite images, and so that weσ
√n  

can also relate what we see to the behavior that we expect from sampling distributions.  
 
 

 

3. Results and Discussion 

3.1 Noise Reduction in Composite Images  
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Figure 3.​ ​The image above shows the effect of the 4 types of noises discussed and the effect of 
averaging 3, 10, 30, and 100 of such noisy images.  
 

We notice here that as the sample size averaging increases, the original noisy image of 
each distribution becomes cleaner than their individual noisy image. Upon the 100 sample size 
average of each distribution, the Gaussian, Poisson and uniform noises result in an image with 
a quite similar degree of clarity compared to that of the Spike noise. This is because unlike the 
other three distributions which have a mean of zero, Spike noise does not necessarily result in a 
noise distribution with a mean of zero. For this distribution, the magnitude of added noise 
depends on the brightness or darkness of the original clean image.  
 

  
Figure 4.​ ​Gaussian noise added to      ​ Figure 5. ​Poisson noise added to clean 
clean image (N=1).      image (N=1).  

 
Figure 6. ​Uniform noise added to       ​ Figure 7.​ ​Spike noise added to clean 
image (N=1).       image (N=1). 
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Figure 8. ​Composite image (N=100) ​         ​Figure 9. ​Composite image (N=100) 
with Gaussian noise.         with Poisson noise. 

 
Figure 10. ​Composite image (N=100)       ​ Figure 11. ​Composite image (N=100) 
with Uniform noise.         with Spike noise. 
 

When we added noise to the second clean image, we found that averaging still reduced 
the noise in the same way we expected. For the Gaussian, Poisson, and Uniform noise, the 
composite image is indistinguishable from the original clean image. One noticeable feature in 
this image is that it is darker than the first image overall. This allows us to more easily observe 
the effect of spike noise. The spike noise makes the dark areas brighter here, which can be 
seen in the cat’s sunglasses in Figure 11. Averaging this type of noise actually decreased the 
contrast of the entire image for this reason.  
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3.2 Statistical Analysis 

 
Figure 12:​ ​Histogram plots of each distribution added to the image along with averaged graphs 
as more images are overlaid. A distinct overall trend emerges: as more histograms are 
averaged, each distribution tends towards a Gaussian profile.  
 

The Gaussian distribution, by default, does not converge to anything except itself. 
Poisson noise also approaches a Gaussian very quickly, because its distribution is inherently 
similar to the normal. Its convergence is sped up by our condition of zero-mean noise: although 
the Poisson distribution is always positive, by shifting the entire graph to the left by an amount 
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equal to the mean, and thus allowing negative values, we ensure that the noise averages itself 
out. Uniform noise starts flat, as expected, but quickly transforms into a bell curve and by N = 10 
is virtually indistinguishable from the previous two distributions. With spike noise, although its 
histogram is generated via recording probabilities per pixel, it too becomes a bell curve by N = 
30, strikingly supporting the Central Limit Theorem. However, there are pseudo-peaks rising 
from the curve below the mean, which are due to issues of pre-saturation. Many pixels 
throughout the image initially have values of either 0 or 255, and will not change if the 
probability code requires that they take on the minimum or maximum value, respectively. Since 
our initial image has many more white pixels than black, we will primarily observe black pixels in 
the noise distribution since the converted white pixels will get washed out. This will skew the 
resultant histogram to the form that we obtained.  

 

 
Figure 13. ​Sampling distribution of the    ​ Figure 14. ​Sampling distribution of the mean 
mean for the cat image with Gaussian noise     for the cat image with Poisson noise (N=100). 
(N=100).   

 
Figure 15. ​Sampling distribution of the mean     ​ Figure 16. ​Sampling distribution of the mean 
for the cat image with Uniform noise (N=100).   for the cat image with Spike noise (N=100). 
 

From these charts, we noticed several things. The overall pattern remains the same as 
with the first image--that with more images contributing to the average, the noise in the 
composite image is minimized. With Gaussian, Uniform, and Poisson distributions, the noise still 
tends toward zero. However, the spike noise composite image (at N=100) does not closely 
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resemble the distribution that we saw from the dog image. The reason for this is related to the 
different way that we generated the noisy image, that is without explicitly defining . The(x, )  ηi y  
noise therefore depends a lot on the image. As we can see, the dog image is very light and the 
cat image is very dark. This explains why the sampling distributions are skewed in opposite 
directions. The spike noise pulls the lighter image toward lower pixel values, and it pulls the 
darker image toward higher pixel values. This affects both the mean and the standard deviation 
of the distributions shown in Figure 12 and Figure 16.  

Finally, we compare the observed standard deviations of the sampling distributions of 
the mean noise, as described in the procedure. We obtained the following results:  

 
Figure 17. ​This plot shows the percent difference between the theoretical standard deviations 
and the observed standard deviations of the mean noises, from the Gaussian distribution, for 
varying values of N.  
 

 
Figure 18. ​This plot shows the percent difference between the theoretical standard deviations 
and the observed standard deviations of the mean noises, from the Uniform distribution, for 
varying values of N.  
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Figure 19. ​This plot shows the percent difference between the theoretical standard deviations 
and the observed standard deviations of the mean noises, from the Poisson distribution, for 
varying values of N.  

 
Figure 20. ​This plot shows the percent difference between the theoretical standard deviations 
and the observed standard deviations of the mean noises, from the Spike noise distribution, for 
varying values of N.  
 

From these plots, we can extract a few conclusions about the error (essentially the 
standard deviation) in the mean noises from each of our distributions. In the first three plots, we 
compare the theoretical standard deviations with the observed deviations in Gaussian, uniform, 
and Poisson noise. For these three distributions the percent differences between the observed 
and expected standard deviations are less than ∓1% for all values of N. In other words, they 
follow the expected trend of . ​However, for the spike noise, the error drasticallyσx = σ

√n  
increases to over 600%. This effect supports what we have seen through all of our analysis of 
spike noise, that this type of noise is entirely different. However, it is interesting that the spike 
noise can still be reduced by averaging, despite its differences from the other noise 
distributions.  
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4. Camera Application 
Given the four generated noise distributions we just discussed, digital images produced by our 
everyday cameras contain all noise distributions. ​Principal sources of Gaussian noise in digital 
images arise during acquisition e.g. sensor noise caused by poor illumination and/or high 
temperature, and/or transmission. Spike noise originates from analog-to-digital converter errors 
as well as bit errors in transmission. The poisson noise however merely comes from the discrete 
nature of electric charge.  
 
Since noise, as shown in figure 2 above reduces upon averaging, we experimented such 
averaging with images from a Samsung SM-N900 back camera. Since these images contain at 
least the 4 types of noise distributions we studied, we expected a better quality image upon 
averaging on Matlab. Consider the Figure 21 below;  
 

 
Figure 21.​ ​Image showing one of the 7 camera images at the top, and the averaged image at 
the bottom 
We can see that the bottom image is clearer than the top image. Averaging did reduce the 
noise. However, we still do have some noise in the averaged image. This could further be 
reduced by taking more identical images to be averaged on either Matlab or Adobe Photoshop. 
In the real world, the noise sources that we have studied cannot be separated. They exist 
simultaneously, but  we can see from this experiment that the quality of the image can still be 
improved by averaging.  
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5. Conclusions and Future Work 
From these analyses, we concluded that noise, upon averaging, decreases depending 

on the sample size of the averaged noisy images.  Firstly, we observe heavy evidence and 
confirmation of the Central Limit Theorem. As mentioned above, the theorem posits that no 
matter what population distributions we deal with, they will converge to a normal distribution. 
This is an important phenomenon found throughout the field of statistics, and simplifies a great 
deal of analysis since it eliminates the need for information about the population distribution and 
reduces the sample distribution to a simple bell curve once the sample size rises beyond thirty. 
This precisely matches what we found in our study: the averaged histograms of each of the four 
distributions converge to Gaussian form by the time N increases past 30. This even applies to 
spike noise, despite its markedly different physical origin and initial form, and is the clearest 
demonstration of the power of the Central Limit Theorem. 

The second key theme, and the one that we initially set out to investigate, is that 
averaging can be an effective way to reduce noise in digital images. However, this mainly 
applies to situations where one has many images at their disposal. The mean noise value, 
which for three of our four cases was zero, remains the same no matter what sample size we 
use. As our sample size increases, deviation from this mean decreases: we observe this trend 
in the tightening of each histogram sequence, as more and more values cluster closely around 
the mean. In theory, the standard deviation should decrease as one over the square root of the 
sample size. We find that our results are consistent with this principle. 

Future improvements could focus on methods to reduce and eliminate noise when only 
one image is available. This could be done via techniques such as a Fourier or wavelet 
transform which is an important tool required to decompose an image into its sine and cosine 
components. Additionally this project can be extended to include the elimination of noise from 
periodic or systematic sources.  
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7. Appendix: 
Matlab Script:  
f = imread('B2DBy.jpg'); 
f = double(f); % Comes as an unsigned integer, but in order to add h, needs to be a double 
mn = size(f(:,:,1)); 
N = 100; % Number of g_i to sum over 
gsum = double(zeros(mn)); % This matrix needs to be same size as our image 
dir = ['Uniform_r100_n100']; %rename as needed for each noise distribution 
 if(~exist(dir,'dir')) 
        mkdir(dir) 
    else 
        rmdir(dir,'s') 
        mkdir(dir) 
    end 
dist_flag = 1; % This is where we can choose what distribution to study.  
                    % 0 = Gaussian; 1 = Uniform; 2 = Poisson; 3 = Spike Noise 
for i = 1:1:N  
    if (dist_flag == 0)  
        h(:,:,i) = normrnd(0,50,mn(1),mn(2)); % Generates Gaussian random noise for each i, average value of 
0, standard dev 50.  
        g(:,:,i) = f(:,:,1) + h(:,:,i);  
    elseif (dist_flag == 1) 
        h(:,:,i) = -86.6 + 173.2*rand(mn(1),mn(2)); % Generates Uniform random noise, average value of 0, 
range of 100. 
        g(:,:,i) = f(:,:,1) + h(:,:,i);  
    elseif (dist_flag == 2)  
        h(:,:,i) = -2500 + poissrnd(2500,mn(1),mn(2)); % Generates Poisson random noise, average value of 0, 
lambda = 50. 
        g(:,:,i) = f(:,:,1) + h(:,:,i);  
    elseif (dist_flag == 3)  
        tmp = rand(mn(1), mn(2)); 
        for y = 1:1:mn(2)       %For each pixel, there is a 10% chance that the pixel will be turned black 
            for x = 1:1:mn(1)   % and a 10% chance that the pixel will be turned white. 80% of the time, the pixel 
                if (tmp(x,y) < 0.065)  
                    g(x,y,i) = 0; 
                elseif (tmp(x,y) < 0.935) 
                    g(x,y,i) = f(x,y,1); 
                else 
                    g(x,y,i) = 255; 
                end 
            end 
        end 
    end 
    gsum = gsum + g(:,:,i); 
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    tmp1 = gsum./i; 
    tmp1(:,:,2) = tmp1(:,:,1); 
    tmp1(:,:,3) = tmp1(:,:,1); 
    tmp2 = uint8(tmp1); 
    tmp3 = image(tmp2); 
    if (i<10) 
        saveas(tmp3, [dir,'/img_i_00',int2str(i),'.png'],'png') 
    elseif (i<100) 
        saveas(tmp3, [dir,'/img_i_0',int2str(i),'.png'],'png') 
    else 
        saveas(tmp3, [dir,'/img_i_',int2str(i),'.png'],'png') 
    end 
    %Make Histogram 
    tmp4 = tmp1 - f; 
    xhi = max(max(tmp4(:,:,1)))*1.5; %calculates an expansive max/min x-value 
    tmp5 = histogram(tmp4(:,:,1),300); 
    set(gca, 'xlim', [-xhi xhi]);  %hardcodes x-axis limits to stop the histograms jumping around 
    if (i<10) 
        saveas(tmp5, [dir,'/hist_i_00',int2str(i),'.png'],'png') 
    elseif (i<100) 
        saveas(tmp5, [dir,'/hist_i_0',int2str(i),'.png'],'png') 
    else 
        saveas(tmp5, [dir,'/hist_i_',int2str(i),'.png'],'png') 
    end 
end 

18 
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Introduction:  

The economic value of a personal vehicle is directly affected by more than just the 

purchase cost. Gas mileage, expected maintenance cost, and longevity of the vehicle, to name a 

few, should all be considered when planning a purchase. The most common form of 

transportation is the automobile. A consumer has two choices when purchasing a car: gasoline 

powered (Internal Combustion Engine, ICE) or an electric vehicle (EV). In order to try to predict 

the most economically beneficial vehicle, we decided to analyze statistics relating to the costs of 

each vehicle’s fuel, energy efficiency, and maintenance. 

The goal of this project is to help average college students make educated choices in the 

type of car, gasoline or electric, they should purchase. While electric cars are initially more 

expensive, there is an opportunity to displace that cost through tax incentives and potentially 

lower energy costs. However, since ICEs are much cheaper, the initial cost of purchasing an 

electric car may take a lot of exclusively electric driving to make up for the higher price. This 

offset may be caused by the difference in fuel prices or maintenance costs. Our plan is to resolve 

these uncertainties in an attempt to explain how different factors affect the value of a car. We 

hope to be able to definitively answer which kind of vehicle is economically cheaper over the 

entire span of owning the car.   

Methods: 

For the average college student, the most pertinent cost after the actual price of a car is 

fuel cost. Fuel efficiency, miles per gallon for gas cars and mpge (the electric equivalent to miles 

per gallon) for electric cars, is the most important factor when attempting to identify a cost 

related to fuel consumption. Because a comparison is being made with college students in mind, 

the cars chosen were based on four affordable makes of cars: Ford, Chevy, Toyota, and Nissan. 
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Specifically, the comparison between electric and gasoline power involved the Chevy Volt, 

Toyota Prius, Nissan Leaf, and Ford Fusion Energi, versus the Chevy Malibu, Toyota Corolla, 

Nissan Versa, and Ford Fusion, respectively. Though three of the electric cars used to compare 

are actually hybrids, for the purposes of our comparison, most of the data used for these cars 

were based on the vehicles while they were in a solely electric engine mode. 

To try to achieve the goal of trying to help future college students get their best buy, 

comparative distributions were created for the different factors relating to fuel consumption. 

Before these distributions were created, two separate sets of comparative plots were generated 

for the electric and gas vehicles. For gas vehicles, the three plots generated were mpg vs. make, 

mpg vs. tank size, and mpg vs. total range. For electric vehicles, three more plots were 

generated: mpge vs. make, mpge vs. total electric range, and mpge vs. battery size.  

Next, we wanted to see if any of the parameters for either car were normally distributed. 

To do this, Minitab was used to analyze the data. Miles per gallon, mileage range, engine size, 

and gas tank size were analyzed for the gas vehicles. Electric mileage range and battery size 

were analyzed for the electric vehicles. In order to analyze normal distribution for gas and 

electric vehicles, we used the Anderson-Darling normality test and normal distributions. To 

analyze the normal distributions, we assumed the populations of our small samples were 

normally distributed. 

The third part of our fuel cost analysis compared the cost per mile of the two categories 

of car. For both gas and electric vehicles, the current national average for fuel cost was used. For 

gasoline vehicles this was $2.06/gal and for electric vehicles this was $0.11/kWh. Then, by using 

the MSRP of each make and model, the difference in cost between each electric vehicle and its’ 

gasoline powered complement was determined. However, because electric vehicles have 
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environmental benefits, there are tax incentives, which are paid back to the consumer. So, the 

prices of each electric vehicle were adjusted by reducing the cost by each respective tax rebate. 

The gas tank/battery capacity of each the car was taken and multiplied with the total electric 

mileage range, resulting with the cost per mile ($/mi). The total difference in initial cost of the 

vehicle divided by the difference in cost per mile in electric and gas modes, resulted in the total 

number of miles that would have to be driven in electric mode in order to make up for the more 

expensive initial cost of the electric car.  

In addition to this fuel cost analysis, the percentage saved over five years due to fuel cost 

was calculated by first gathering data on Nissan, Chevy, Toyota, and Ford electric and gas cars 

of similar size. This data was gathered from Edmunds True Cost to Own Calculator (Edmunds 

TCO). The percentage saved over five years for each make was then calculated using (1). To 

compare the percentage difference, the mean and standard deviation was found using (2) and (3).  

The mean and standard deviation were used in (4) and (5) to find the lower and upper and 

boundaries for outliers; any data below the lower boundary or above the upper boundary would 

be an outlier.  This would allow perspective buyers to see how much the percentage difference 

may change due to different makes and models and information about cost to own in an attempt 

influence the decision between an electric versus gasoline powered vehicle.  

 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑆𝑎𝑣𝑒𝑑	𝑂𝑣𝑒𝑟	5	𝑌𝑒𝑎𝑟𝑠 =
𝑔𝑎𝑠	𝑐𝑜𝑠𝑡 − 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐	𝑐𝑜𝑠𝑡

𝑔𝑎𝑠	𝑐𝑜𝑠𝑡 ∗ 100 (1) 

 𝑀𝑒𝑎𝑛	𝑉𝑎𝑙𝑢𝑒	𝑜𝑓	𝑆𝑎𝑚𝑝𝑙𝑒 , 𝑥 	=
𝑥
𝑁 (2) 

 𝑆𝑎𝑚𝑝𝑙𝑒	𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 , 𝑠 =
𝑥 − x ̄E

𝑛 − 1  (3) 
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 𝐿𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = x − (𝑠 ∗ 1.5) (4) 

 𝑈𝑝𝑝𝑒𝑟	𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 	 x + (𝑠 ∗ 1.5) (5) 

 

The comparative maintenance requirements of the two types of vehicles are also 

imperative to the car purchase decision. In the argument between gasoline and electric, there are 

two main points of contention. One side of the argument commented that most of the 

maintenance costs of a gas vehicle have to do with its engine, which includes replacing spark 

plugs, oil changes, and filter changes. None of these components are found in electric car 

engines, so they are assumed to be cheaper. But, electric cars need to be charged using charging 

stations, which may need repair as well. To create a better picture about which side of the 

argument held the greatest amount of credibility, the expected maintenance cost over time for 

both electric and gasoline powered cars was also researched.  

Results: 

Our group found it necessary to first provide the sets of raw data that we collected in our 

research for each category of car before showing the different applications and calculations that 

stemmed from the original data. See Tables 1 and 3 in Appendix A. As explained in the methods, 

the first step was to create comparisons from the raw data by creating plots of mpg vs. tank size, 

mpg vs. make, and mpg vs. total range. See Figures 1, 2, and 3 in Appendix B. For electric cars, 

three plots were generated: mpge vs. make, mpge vs. electric mile range, and mpge vs. battery 

size. See Figures 4, 5, and 6 in Appendix B.  These plots help depict to a prospective buyer that 

in both cases, there is no single car that preforms best in every category.  

Next, to determine if certain data were normally distributed or not, Minitab was used to 

analyze the data. For gas vehicles, miles per gallon, mileage range, engine size, and gas tank size 
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were viewed. For electric vehicles, electric mile range and battery size were viewed. For miles 

per gallon for the gas cars, the Anderson-Darling normality test was plotted in Figure 7 in 

Appendix B. Based on this plot, miles per gallon for gas cars appears to be normally distributed. 

Three of the four data points fall within one standard deviation of the mean; all four of the data 

points fall within two standard deviations of the mean. This procedure was carried out for the 

other five remaining categories. With only four data points to use, this procedure resulted in an 

approximately normal distribution for all of the six parameters, which appeared to be a 

reasonable assumption for all except for electric mileage range. Assuming electric mileage range 

has a normal distribution results in the distribution Pr(electric mileage range)~N(µ = 50.25, 

σ2=1250.69). This resulted in a reasonable looking normality plot, but this distribution is not the 

true distribution of the population’s electric mileage range. The mean is not that high, nor is the 

distribution as spread out as the standard deviation implies. Most electric vehicles or hybrids 

have values closer to the lowest three values in our data: 19, 22, and 53 miles. However, even 

with the small sample size of cars, miles per gallon, gas tank size, gas mileage range, gas engine 

size, and electric battery size could all easily be considered normally distributed.  

It wasn’t important that each distribution was found to be normal. The goal was to find 

the distribution that represented each parameter the best, so that when a potential buyer of a 

vehicle wanted to see how a certain car’s mpg, for example, compared to the overall population 

of cars, they would be able to do that quickly. Finding the true distributions would have been 

made much easier had data for more cars been researched.  

Another significant calculation was the number of miles it would take to offset the initial 

higher price of an electric vehicle. Information from Tables 2 and 4 in Appendix A were used for 

this calculation. Table 5 shows the number of miles needed to drive each car in electric mode 
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exclusively to save the extra amount of money that you spent in buying the higher priced electric 

car. Note that the Toyota Prius Prime’s impressive mpg and poor conversion of electric power to 

distance driven actually made driving in gas mode more economically efficient than driving in 

electric mode. However, this project is based around the college student, and while the higher 

initial cost does not necessarily have to be displaced within the four years of a normal college 

career, the difference needs to be diminished within a reasonable time frame. If it is assumed that 

the operating yearly mileage is the same as the national average, 13,476 miles, the amount of 

time in years to offset the higher initial cost was calculated. See Table 6 in Appendix A. The 

Chevy Volt is the only car with an achievable time to own a vehicle of just over 16 years. The 

Nissan and the Ford have timeframes that are both unrealistic amount of times to own a car, let 

alone driving it in only electric mode for that amount of time. 

 Next, the percentage money saved over five years was calculated by first finding data on 

Edmunds TCO. See Tables 1 and 3 in Appendix A. The percentage change was calculated using 

(1). For Nissan, Chevy, Toyota, and Ford, the percentage changed over 5 years is 46.334%, 

54.66%, 46.259%, and 42.437%, respectively. The sample standard deviation, calculated using 

(3), was found to be 5.157%. The range for outliers, calculated using (4) and (5), was found to be 

39.687% for the lower boundary and 55.158% for the upper boundary.  Since all the data was 

within this boundary, there were no outliers.  

 The significance of no outliers being present out of the percentages saved over five years 

for these cars is that no car is great at saving the driver a lot of money compared to other cars, 

but there is no car that is going to break the driver’s bank either. The chevy certainly has the best 

percentage saved, but all of them save the driver money.  
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Over the entire lifespan of all electric and gas cars, maintenance cost for electric vehicles 

was about one-third the amount gas cars required. 

Discussion: 

The biggest selling points for the electric car are that they are better for the environment 

than gas cars and overall, one could save money in the very long run with cheaper maintenance 

and fuel costs. This was not the case for any of the four cars we researched. Only if a driver 

drove the Chevy Volt in electric only mode for over 216,000 miles would that driver come close 

to breaking even on choosing an electric vehicle rather than a gas vehicle. Not to mention, 

gasoline powered vehicles are very competitive to the electric vehicles in many of the chosen 

categories. These results were somewhat surprising as it would be reasonable to assume, with all 

the attention electric cars are receiving, that the electric cars could drive farther without a fuel fill 

up and be much more efficient than any of the gasoline cars. However, that was not found.  

One of the main focuses of our project has to do with comparing the percentage 

difference in fuel cost over five years. While a fairly simple idea to try to compare, because there 

are so many variables attributed to automobiles, it made finding a way to minimize these 

variables imperative for quality results. The make, model, size, and year of the car all had to be 

normalized in order to create a baseline to properly compare similar electric and gas cars. Since 

we didn’t get a sample that was completely random and instead chose which cars to take data 

from, the data gathered about the sample mean, sample standard deviation, and outliers is not 

completely accurate.  

Collection of the data for fuel efficiency and tank range was a straight forward process. 

However, there are very few fully electric vehicles on the market that are close to the price range 
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of a normal college student. Because of this, we chose to use hybrid vehicles in the study as well, 

analyzing them mostly in their electric modes.  

The data collected about maintenance requirements for both electric and gasoline 

powered vehicles, along with the amount saved for the overall operation of these vehicles, 

implies multiple assumptions, including amount driven, type of vehicle, driving style, 

geographical location, and preference in the amount of care given to the car. Assuming the an 

average driver, researched data had to be located all assuming the same things, which was 

sometimes difficult. The average driving data collected assumed they would be driving within a 

city (e.g. low mileage) and would be tuning up and caring for their vehicle in accordance with 

averages expressed in the actual research.  

In the results found about displacing extra cost due to an electric car with distance driven 

in electric mode, we used the national average for mileage per year. It is possible that a college 

student could drive much less than the national average, thus it would take even longer to see an 

economical return due to lower fuel costs.  

Another difficulty that came with trying to collect data related to electric and gasoline 

cars is many of the articles written are used to convince the reader one way or another about 

electric vehicles. When data was found on websites with this bias, the useful information had to 

be extracted, dismissing the persuasive information and further researching what some sources 

do not want the media to know.  

Finally, lacking a larger amount of data for our plots and distributions revealed 

incomplete pictures of how some of the parameters are realistically distributed. A more complete 

study would include all electric only vehicles, hybrids, and gas only vehicles produced after a 

certain year and sold to the consumer under a certain price. A lack of time prevented this kind of 
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data from being collected. Therefore, our lack data leaves our conclusions vulnerable to possible 

criticisms. Despite our incomplete amount of data, we are confident in the conclusions.   

Conclusion: 

Claims have been made that the moral obligation of a cleaner car and the lower cost of 

electricity to gasoline would offset the consistently higher price of an electric vehicle. While the 

moral incentive to buy an electric car could possibly be quantified to theoretically cover some of 

the difference in cost, we chose to not include moral incentive as a factor in our research. The 

only factors took into account were those related to price: fuel efficiency, maintenance costs, and 

money saved over time. In our analysis of the data, with the college student in mind, the results 

did not align themselves with what was expected.  

Our results showed that gasoline cars and electric cars preform very similarly, a highly 

unanticipated result. But, the best decision to save the most amount of money is to buy a low cost 

gasoline powered car with high gas mileage. The extra cost of purchasing an electric car will not 

be made up. In the future, for electric cars to ever have a reasonable chance of saving the 

consumer enough money to buy the initially higher priced electric car, any of the following 

would have to occur: the gas price would have in increase, the electricity price would have to 

decrease, the mpge would have to increase, the electric only mileage range would have to 

increase, or the price of electric cars would have to decrease. Until that happens, the gas vehicle 

will be more economically efficient to the driver.  
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Appendix A: 
	

Table 1: Gasoline Powered Raw Data 
Make Model Engine 

Size 
MPG Total 

Range 
Number of 
passengers 

Cost of fuel 
over 5 years ($) 

Toyota Corolla 1.8 L 32 422 mi 5 5,320 
Nissan Versa 1.6 L 35 378 mi 5 4,964 
Ford Fusion 1.5 L 30 498 mi 5 5,957 

Chevy Malibu 1.5L 32 416 mi 5 7,168 
 

Table 2: Gasoline Car Data 
Make MSRP ($) Tank Capacity 

Toyota Corolla 17,300 13.2 gal 
Nissan Leaf 11,990 10.8 gal 
Chevy Volt 21,625 13.0 gal 

Ford Fusion Energi 22,110 16.6 gal 
	

Table 3: Electric Powered Raw Data 
Make Model Battery Size MPGe Total Range Number of 

passengers 
Cost of fuel over 

5 years ($) 
Toyota Prius Prime 8.8 kWh 120 640 mi  4 2,859 
Nissan Leaf 18.4 kWh 106 107 mi 5 2,664 
Ford Fusion Energi 7 kWh 88 420 mi 5 3,429 

Chevy Volt 30 kWh 112 550 mi  5 3,250 
 

Table 4: Electric Car Data 
Make MSRP ($) Tax Rebate ($) Battery Capacity Total Electric Range 

Toyota Prius Prime 27,100 4,502 8.8 kWh 22 mi 
Nissan Leaf 29,010 7,500 30 kWh 107 mi 
Chevy Volt 33,170 7,500 18.4 kWh 53 mi 

Ford Fusion Energi 33,900 4,007 7 kWh 19 mi 
 

Table 5: Miles to Offset Cost 
Make Miles to Offset Cost 

Toyota N/A  
Nissan 607,857 mi 
Chevy 216,310 mi 
Ford 568,933 mi 
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Table 6: Time to Offset Cost: 
Make Years to Offset Cost 

Toyota  N/A 
Nissan  45.11 years 
Chevy  16.05 years 
Ford  42.22 years 
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Appendix B: 
Figure 1: MPG vs. Make 

 
 

Figure 2: MPG vs Tank Size 
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Figure 3: MPG vs. Total Range 

 

 
Figure 4: MPGe vs. Make 

 
 

 

29

30

31

32

33

34

35

36

0 100 200 300 400 500 600

M
ile
s	p

er
	G
al
lo
n

Total	Range	(Miles)

MPG	vs.	Total	Range

Toyota

Nissan

Ford

Chevy

0

20

40

60

80

100

120

140

Toyota Nissan Ford Chevy

M
ile
s	p

er
	G
al
lo
n	
el
ec
tr
ic

Make

MPGe	vs.	Make

109



15	
	

Figure 5: MPGe vs. Electric Mile Range 

 

 
Figure 6: MPGe vs. Battery Size 
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Figure 7: Normality Test Miles per Gallon 
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Diving in the Game of Soccer	

Introduction	

Diving in soccer is a controversial topic among players, coaches, fans, and officials. Soccer is 
known for players’ exaggerations and entirely false collisions and injuries that happen all too 
frequently in some matches. Players are motivated to flop in order to regain possession of the 
ball, run down the clock, or even gain penalty kicks. In fact, flopping is sometimes encouraged 
by coaches or others since it has the potential of being a game-winning move. Who could forget 
the infamous dive by Arjen Robben that resulted in a penalty on Mexico and then an arguably 
unearned win by the Netherlands in the 2014 World Cup? Flopping has become a part of the 
sport that cannot be ignored and has the power to change the course of a game. 	

We anticipate that there will be some type of correlation between flopping culture and the guilty 
team’s position on the field, their score, the offender’s nationality, or how much time has passed 
in the game. We have chosen to look at European Premiere League games over a eight-year 
period from 2009-2016. For this report, we defined a flop as a player falling or going down when 
there was no contact initiated by either player or an over exaggeration of contact or an injury. In 
order to introduce as little bias as possible, we paid attention only to instances of flopping 
officially penalized by a yellow card. 	

The Wall Street Journal produced some elementary statistics on flopping and which teams were 
guiltiest. They only took into consideration diving incidents that resulted in a player being 
substituted. They counted total injuries and total game time “wasted” by these incidents. Also, 
many argue that South American, Spanish, and Italian players are the most likely players to dive 
and suggest that it is a cultural phenomenon. Our objective is to take closer look at when each 
foul/flop occurs in the game and its relationship to field position, player nationality, and score at 
the time.	

Problem Statement	

Most internet and even newspaper articles that address the issue of simulation are based on very 
shallow and small sets of information. We aim to take an in-depth look at simulation incidents in 
their full context to identify possible distributions. 	

Methodology	

We began collecting data by watching about five or six world cup soccer matches and looking 
for when players flopped. It is mostly clear when a player dives in a game, however many of 
these dives go unnoticed by the referee or the wrong call is made and a penalty is given to the 
player who seemed guiltiest of committing what looked to be a foul. As we watched matches, we 
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took note of each incident that occurred which we believed to be a dive. We were able to obtain a 
good amount of data using this method, but we realized that this was introducing a lot of bias. 
Since most of our data was not confirmed with a corresponding call from the referee, we decided 
it would be best to discard the data and start over: this time only taking into consideration the 
dives that were officially called by the referees. 	

This realization led us to the method we ended up resorting to in order to find usable data points. 
After some brief research, we decided to focus our attention on the European Premiere League. 
This league seemed to have a decent amount of yellow cards being awarded to players for 
flopping. Data collection proved to be a very tedious task. The most effective way to find 
incidents where players were yellow carded for diving was to read live commentaries from each 
match. We used websites like ESPN or BBC as a starting point for the majority of our data 
collection. The live commentaries included each yellow card awarded during the game, the 
reason for the penalty, and the time at which it occurred. Using context clues we could find what 
the score of the game was at the time of the dive, and after some further research we could find 
where the player was on the field. 	

In addition to using these websites, we also obtained information from some Premier League 
teams’ websites. These websites typically also had live commentaries, and some had more 
convenient charts for finding yellow carding incidents and where they happened. By researching 
the statistics for each match played by that particular team, we could extract information 
regarding these yellow carding incidents a little bit more efficiently than our previous methods.	

After obtaining 40 diving instances over the years of 2011-2016, we were able to compile our 
data into a few histograms to show where the statistical trends exist. We used Minitab to create 
four histograms and one dot plot to best illustrate the trends in the data. The first histogram we 
are including shows the dives with respect to the guilty player’s position on the field. We studied 
the relationships between diving and the nationality of the guilty player and the time elapsed in 
the game. We also created a histogram showing dives with respect to whether the guilty player’s 
team was losing, tied with the other team, or winning. 	
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Results	

	

Figure 1: The frequency of dives and flops that were given a yellow card according to the player’s position on the 
pitch. 	

It appears that players are much more likely to dive when they are in their own attacking third. 
Drawing a free kick or penalty that close to the opponent’s goal is an excellent scoring 
opportunity. In the histogram shown above, position 0 refers to the defending third of the field or 
in other words, the section of the field including the goalie of the guilty team. Position 1 refers to 
the middle third of the court or midfield. Position 2 denotes the attacking third of the field or the 
section of the field including the other team’s goalie. Of the 37 dives that were recorded, 27 were 
performed in the player’s attacking third. From the sample taken, we determined that there is a 
73% chance that players will dive when in the attacking third of the pitch as opposed to the 
middle or defending third. This is significantly higher than the probabilities for the middle third, 
13.5%, and defending third, 16.2%. This follows popular belief that players are more likely to 
dive and receive a yellow card for doing so when in the attacking third. We can also conclude 
that a player is either less likely to dive or receive a yellow card for diving when in their own 
defending third, perhaps because of the high-stakes and overall vulnerability of their goal and 
defense. 	
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Figure 2: The frequency of dives and flops that received a yellow card with respect to the score of the game. The 
score of the game is relative to the diving player’s team. 	

There doesn’t appear to be any remarkable tendency for players to dive depending on the score 
of the game. From the sample size used, we could only determine a 6% difference between the 
probability that a player will dive or flop when they are winning compared to when they are 
losing. In our data, this was not a significantly important comparison to make, but among a 
larger data sample, one may be able to identify a more concrete trend. 	
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Figure 3: The frequency of players receiving a yellow card for diving with respect to their nationality. For the sake 
of this histogram, Spanish players were grouped with Americans (Americans including North, Central, and South 
America) because the stereotype follows that Spanish and South American players dive more often. It is important 

to note that repeat offenders were not included.	

The notion that Spanish and South, North, and Central American players flop more than others 
isn’t entirely correct. For our sample size, we found that Europeans were responsible for 49% of 
the dives that received yellow cards, Hispanics were responsible for 43%, and Africans were 
responsible for 8%. It is important to note that these statistics were taken after including repeat 
offenders.  There are, however, far more European players than Hispanic players in the EPL. Out 
of the 626 players that played in the EPL during the 2014-2015 season, we found that 73.3% 
were European, 14.5% were Hispanic, and 7.6% were African. Although Hispanics represented 
14.3% of the entire player population in the EPL, they were responsible for 43% of the dives 
within our sample size. We can conclude from the raw data that in the EPL, a yellow card for 
diving is most likely given to a European player. However, we can conclude that for equal 
European and Hispanic players, Hispanic players are more likely to dive or receive a yellow card 
for diving. 	
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Figure 4: Scatterplot showing the distribution of dives for each player according to the time elapsed in the game. 
This represents a timeline. 	

From the scatter plot above, it is reasonable to conclude that the smallest probability of a player 
receiving a yellow card for diving occurs within the first 20 minutes of the game. This could be 
due to the overall lack of aggression as games start, or that players aren’t as tired and don’t take 
time to rest when they dive or flop. At the beginning of a game, there is less pressure to deliver. 
In players’ minds, they have plenty of time to score or make a comeback but as the game starts to 
wrap up, the pressure builds and they get more desperate. A reasonable conclusion to this would 
be that when the pressure to score is on, players will try whatever it takes to make things go their 
way. The data may be a reflection of referees as well. Referees may be more reluctant to give 
yellow cards for diving early in games so that players do not need to play the majority of the 
game with a yellow card for a non-malicious offense. 	
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Figure 5: Frequency of dives with respect to the time elapsed in the game. Rather than examining each dive 
occurring at a specific time, we grouped each dive according to categories. Category 1 represents the beginning of 

the game, or 0-29 minutes elapsed. Category 2 represents the middle of the game, or 30-59 minutes. Category 3 
represents the end of the game, or 60-90+ minutes 	

From the data organized in the histogram, it is reasonable to conclude either that a player has a 
higher probability of receiving a yellow card for a dive in the middle of the game or that there is 
a higher probability that a player dives in the middle of the game. We found that there is a 43.2% 
probability that players will receive a yellow card for diving in the middle of the game as 
compared to 21.6% and 35.2% probability for flopping in the beginning or the end of the game, 
respectively. 	

 Pr 𝑥 = %
&

 (1)	

Where Pr(xi) represents the probability that a player dives during a given time division. ni 
represents the number of dives within the given time division and N represents the number of 
dives throughout all time divisions. 	

Faults in our data may come from the fact that it is not entirely clear which third the dive 
occurred in for every game. Adjacent comments usually offer strong hints to the direction of 
play; however, not all real-time commentary sources provide substantial detail. Examining 
footage from each match during the relevant minutes is an intense process, but solves this issue. 	

The accuracy of the trends we found could be increased greatly if a larger sample could be 
obtained. A possible solution would be to write a Linux script to sift through the tens of 
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thousands of publicly available match commentaries. It would flag commentaries that feature 
combinations of keywords including “simulation”, “oversimulation”, “dive”, “booking”,“yellow 
card”. The script would compensate for the most time-consuming part of data collection: 
identifying games in which yellow cards were awarded for simulation. Other factors that could 
be examined are player age, player position, total number of yellow cards, referees, and home 
versus away matches.  	
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Appendix A	

	

 Appendix A: Refined Data	

We originally examined World Cup matches, but ignored those data points when our data 
collection method changed. Only the 37 Premier League incidents above were considered to 
create histograms, etc. 	
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Determination of the More Important Performance Aspect for Par Four Scoring 
Between Driving and Putting 

 
Introduction: 
 

Golfers have long debated the key to low scores, and among skills such as short game, 
iron play, and recovery, driving and putting are the most attractive answers. Between these two, 
most have reached the consensus that driving is more important, even to the extent of the cliché 
that one “drives for show and putts for dough.” Because golfers only have so much time to 
practice different areas of their games in order to maximize their success, and because so many 
people are want for a clear answer, and because we ourselves are golfers and golf enthusiasts, we 
used several techniques in statistical analysis to determine whether driving or putting is more 
important for good scoring. 
 
Problem Statement: 
 

Driving is the first shot taken on par fours and par fives, and it is beneficial to hit long 
and accurate drives since shots can result in penalty strokes or awkward shots from the trees. But 
putting ultimately determines score, and, though frustrating, a two foot putt counts for just as 
many strokes as any other shot. Perhaps it is the notion that putting determines the final score on 
a hole that leads people to believe it is the most important shot.  

The problem in determining if this is true lies in the absence of clear boundaries and clear 
statistics from which meaningful conclusions can be drawn. For example, the quality of a 
golfer’s drives and other shots has an immediate impact on the number of putts that the player 
needs to hit once on the green. So for our question, a statistic like “putts per round” gives us no 
information, as poor drives lead to difficult approach shots which often lead to longer, more 
difficult putts. Furthermore, different types of holes place emphasis on different parts of one’s 
game. Par threes do not have a fairway for tee shots, and par fives give a serious advantage to 
long hitters. 

 
Methodology: 

 
For this reason, we decided to analyze the correlation between par four scoring average, 

strokes gained driving, and strokes gained putting collected from ShotLink™ data from the PGA 
Tour stat webpage. We chose to constrain our data to par fours, because there is only one tee shot 
before the approach, leaving less room for error, and there are more putts from an intermediate 
distance. However the foundation for our analysis lies in our decision to use “strokes gained” as 
the medium to measure relative performance of driving and putting. This statistic was developed 
by Mark Broadie, a business professor at Columbia University. It is calculated by summing the 
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average number of shots gained or lost depending on the location reached by the drive or putt 
being analyzed (PGATour.com). For example, a player may lose 0.3 strokes on his drive if it 
lands in a fairway bunker. We felt this gave the most accurate representation of the performance 
of putting and driving for each player. 
 
Current Data, Tables, and Graphs: 
 

 
Figure 1: Histogram of strokes gained driving with normal distribution 

 

 
Figure 2: Histogram of strokes gained putting with normal distribution 
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The histograms above represent the distribution of strokes gained driving (SGD) and 

strokes gained putting (SGP) from the sample of players. Histograms were chosen here because 
they appropriately display this data even though it has several instances where multiple players 
have the same par four scoring average. As shown in the plot, both data sets take on the general 
shape of a bell curve, and we approximate them with normal distributions. For strokes gained 
driving the mean is 0.02717, and the standard deviation is 0.3446. For strokes gained putting the 
mean is 0.01004 and the standard deviation is 0.4192. 

 

 
Figure 3: Scatterplot of SGP vs SGD with a fitted straight line 

 

 
Figure 4: Scatterplot of SGP vs SGD with a quadratic fit 
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The two figures above are identical scatterplots of SGP vs SGD, and figure 3 has a linear 

fit while figure 4 has a quadratic fit. The reason both are included is the subtle possibility of 
nonlinear data. The straight line seems reasonable enough, but the curved shape of the quadratic 
appears slightly closer. This could suggest that as players stray from the mean of each category, 
the difference in their performance on SGP and SGD become larger. However, because we are 
only analyzing the middle 50% of players with a statistic that averages to 0 for all the players, it 
follows that a quadratic trend should not apply outside our window. The coefficient of 
determination for the linear fit was only 0.0567, and we could not do the same fit for the 
quadratic because it is nonlinear. Furthermore, the notion of driving performance and putting 
performance being related seems unlikely, and the poor fit of both lines supports this. 

 

 
Figure 5: Scatterplot of SGD vs rank 

 

 
Figure 6: Scatterplot of SGP vs rank 
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For our last two figures we simply constructed scatterplots of SGD vs par four scoring 
rank and SGP vs par four scoring rank. These are the best indication of whether or not putting or 
driving has the greatest impact on par four scoring average because they directly compare the 
two strokes gained with the scoring rank. However, by all appearances from the graphs, there 
seems to be no relationships whatsoever. The SGP vs rank graph at first looks tighter, but that is 
only a result of the expanded y-axis to accommodate the outliers. 
    In order to confirm our suspicion that neither putting nor driving contribute more to the rank, 
we computed three correlation coefficients: Pearson, Spearman and Kendall. The following 
results were calculated using Minitab for the Pearson and Spearman, and VassarStats.com for the 
Kendall:  

Table 1: Correlation coefficients and corresponding P-values 
Pearson Spearman Kendall 

Putting P-value Putting P-value Putting 
0.009 0.933 -0.052 0.618 -0.1236 

Driving P-value Driving P-value Driving 
-0.092 0.618 -0.093 0.369 -0.0448 

 
 

All three of these coefficients are very low, showing that no matter the test, the 
correlation between SGD and SGP and rank are extremely weak. However, strictly speaking, that 
is not the aim of this discussion. We are trying to determine whether driving or putting is more 
important. This is why we use a student t-test to compare the driving and putting distributions 
since we have a small data set.   

 
Table 2: Student t-test, P-value and degrees of freedom 

T-test P-value 
Degrees of 
Freedom 

0.69 0.489 185 
 
 The T-test is not very high, so we know there at least a small relationship. However, 
because the P-value is greater than 0.05, that relationship is very weak. 
 
Conclusion: 
 

There is no clear winner here between driving and putting for impact on par four scoring. 
The golf community almost unanimously support that good putting is clearly more important 
than good driving, but that is not the case. Our selected population of PGA Tour strokes gained 
driving and strokes gained putting took the shape of a normal distribution when displayed in a 
histogram, confirming our theory that the data would tend towards the mean. We added linear 
and quadratic fits to scatterplots of SGD vs SGP, which indicate a lack of a direct relationship 
between driving and putting. Our last figures were scatterplots of both SGD vs rank and SGP vs 
rank. These showed the notably poor correlation for both statistics, and calculations for Pearson, 
Spearman and Kendall correlations coefficients further support this.  

Possible explanations include our data range, choice of population and limited scope. Our 
data range was only the middle 50% of available players, and though the intent was to not 
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consider exceptions to any trends, the opposite effect may have occurred. The population was 
exclusively professional golfers, and the fact that most areas of their game are extremely good 
could keep the variations from being more pronounced. Finally, perhaps the most likely, is the 
difficulty to compare driving and putting using simple methods. There are literally hundreds of 
different aspects to a golfer’s game, and these are just two. So the extremely weak correlation 
seen here is not necessarily a great measure of the importance of either stat. Simply put, too 
much is going on that affect scoring average to single out a single stat. Therefore, a better project 
would be with a much larger data set of a varying range of golfers and several other, less directly 
related, statistics as additional information. 
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Chrissy Nielsen, Brianna Riley, Daniel Sunderland 
MATH 3320 Project Report 
 

Optimal Prediction Factors for a Victory in the NFL 
 

I. Introduction: 
 Every year, many people around the country compete to create a model that best predicts 
who will come out on top at the end of the NFL season. Instead of creating a model trying to 
predict this year’s NFL rankings, we decided to find which single parameter contributed the most 
to a team’s chance of winning. The parameters we chose to test included the total yards ran and 
passed by a team, the rank of players for each team, and the notion of home field advantage for 
each team. Using data and rankings from a previous season, we constructed scatter plots, used 
Pearson correlation coefficients, and ran a Tukey test as a basis for comparison for the different 
parameters. We also used binomial distributions for the win/loss record to determine the 
probability of winning or losing games and then comparing our predictions to the games 
throughout the season. We collected data from all 32 teams regarding the chosen parameters to 
best achieve an accurate model to predict wins and losses for each team during the regular season.  
 

II. Problem Statement: 
We want to be able to predict which team will win any game in an NFL season. Do a statistical 
analysis of yardage, player ranking, and home field advantage, and their ability to predict the 
outcome of future games. Then compare each parameter to determine which is the optimal 
prediction factor.  
 

III. Methodology and Results: 
Each person on our team split up to tackle one factor individually in order to distribute the work. 
Our methods and results are below, sorted by factor. 
 

A. Home Field Advantage 
Chrissy’s job in the project was to determine the effect of home field advantage on a team’s chance 
of winning a game. She first recorded data from each game between all 32 teams of the NFL in 
the 2014 season. For the Packers, the data included who the Packers faced in every game, whether 
the Packers were playing at home or away, and whether the Packers won or lost. This data was 
then analyzed to count a “Home-Win” and an “Away-Loss” as a 1, which means the home team 
of that game won. The “Home-Loss” and “Away-Win” games were counted as a 0, meaning the 
home team of that game lost. These two categories, referred to as “Home-Win” and “Home-Loss” 
respectively, were then averaged over all of the games, giving a percentage of home wins and 
home losses. This was repeated for the other 31 teams of the NFL, and each of the home win and 
home loss percentages were averaged together. This gave us the choice of looking at individual 
home field advantages for teams or overall home field advantage for football games in general. 
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Table 1: Home and away wins and losses for the Patriots during their 2014-2015 NFL  season. 

Games Home/Away Win/Loss Home Win Home Loss 
@Dolphins 0 0 1 0 
@Vikings 0 1 0 1 

Raiders 1 1 1 0 
@Chiefs 0 0 1 0 
Bengals 1 1 1 0 
@Bills 0 1 0 1 

Jets 1 1 1 0 
Bears 1 1 1 0 

Broncos 1 1 1 0 
@Colts 0 1 0 1 
Lions 1 1 1 0 

@Packers 0 0 1 0 
@Chargers 0 1 0 1 
Dolphins 1 1 1 0 

@Jets 0 1 0 1 
Averages: 0.47 0.80 0.67 0.33 

 
Table 1 was then repeated for all 32 total teams in the NFL which gives a large sample size because 
there are more than 30 points to analyze. The column with names shows who and where the Patriots 
played in each game. The averages at the bottom show that the Patriots, for example, played 47% 
of their games at home and won 80% of their games in total. Throughout the season, 67% of their 
games resulted with the home team winning, while 33% of the games resulted in the away team 
winning. This corroborates our assumption that teams playing at home have a slight advantage 
over the visiting team. 

When each of these games were recorded, each particular point is counted twice because, 
as seen above in the highlighted row, when the Patriots play the Green Bay Packers in Green Bay, 
the away loss recorded for the Patriots counts as a “Home Win” because the Packers won at home. 
When the data was recorded for the Packers in the same manner, the data point where the Packers 
play at home against the Patriots also counts as a home win. The doubling of data points would 
usually skew the data favoring those points which were counted multiple times; however, because 
every single point was counted twice, the data is not biased and still reports the correct trend. 

Most teams had a higher percentage of home wins than away wins, with the exception of a 
few possible outliers. The overall average percentage of home wins was 57.29%, while the overall 
away win average was 42.29%. These do not quite add up to 100% exactly because of the singular, 
double counted, tie game between the Carolina Panthers and the Cincinnati Bengals which we 
counted as a loss for both teams. Because the tie shows up twice, the home loss for each still 
balances with the away loss for each. The complete list of winning percentages for home and away 
games per team can be seen in the table below. 
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Table 2: Home and away loss and win percentages for each team during the 2014-2015 NFL season. 

Team Home Win = Away Loss Home Loss = Away Win 
49ers 46.67 53.33 
Bears 40.00 60.00 

Bengals 46.67 46.67 
Bills 60.00 40.00 

Broncos 73.33 26.67 
Browns 53.33 46.67 

Buccaneers 40.00 60.00 
Cardinals 66.67 33.33 
Chargers 53.33 46.67 

Chiefs 66.67 33.33 
Colts 60.00 40.00 

Cowboys 26.67 73.33 
Dolphins 53.33 46.67 

Eagles 66.67 33.33 
Falcons 53.33 46.67 
Giants 53.33 46.67 
Jaguars 66.67 33.33 

Jets 53.33 46.67 
Lions 66.67 33.33 

Packers 73.33 26.67 
Panthers 53.33 40.00 
Patriots 66.67 33.33 
Raiders 66.67 33.33 
Rams 46.67 53.33 

Ravens 60.00 40.00 
Redskins 66.67 33.33 

Saints 46.67 53.33 
Seahawks 60.00 40.00 
Steelers 66.67 33.33 
Texans 53.33 46.67 
Titans 53.33 46.67 

Vikings 73.33 26.67 
 
 As seen above, the majority of the teams have a higher Home Win percentage than Away 
Win percentage, thus corroborating the notion of a “home field advantage”. Not every team 
followed this same trend. In fact, the Dallas Cowboys won almost all of their games, yet the only 
three games they lost were at home. This appears to be a possible outlier based on the rest of the 
data points, but cannot be ignored as an important percentage to investigate. We tested the 
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difference of the two data sets using a Tukey test which helps determine whether the two sets of 
data--Home Wins and Away Wins--are statistically different. So long as the difference of means 
is larger than the expected error of the data sets, the two data sets are said to be distinct, and have 
a significant difference. In laymen’s terms, the Tukey test determines if the data is different enough 
to consider the two independent variables (Home Win or Away Win) different inputs. 
 

 
Figure 1: Tukey test showing that Home Win percentages and Away Win percentages are statistically different. 

 

 As seen in Figure 1, the Tukey test with 95% confidence intervals yielded negative values 
which never included 0. By the note given at the bottom of Figure 1, because the interval is all 
negative, we can see the average Home Win percentage is significantly different from the average 
Away Win percentage. The difference in data can also be seen with more clarity when viewed as 
a boxplot, as shown below in Figure 2. The singular outlier in the sets is from the highlighted 
Cowboys data in Table 2.  
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Figure 2: Boxplot showing the difference in data between Home Wins and Home Losses. 

 
 Because games end in a binary response, “win” or “loss”, each game can be represented 
by a Bernoulli distribution. Multiple games can be represented by multiple Bernoulli distributions, 
which can also be referred to as a binomial distribution. A binomial distribution has two 
parameters: a probability of a trial resulting in a “success”, and the number of trials. In this case, 
there are 15 games per team per season, therefore 15 trials. If we define a “success” as winning a 
home game, the corresponding probability would be the average percentage of Home Wins in 
decimal form: 0.5729. When organized together, the probability of winning any number of home 
games in a season of 15 home games is given by equations (1) and (2). 

 x ~ Bin(p=0.5729, n=15) (1) 
 𝑛

𝑥
𝑝$(1 − 𝑝))*$

)

$+,

 
(2) 

By adjusting the values of x, this equation can also be used to determine the probability of 
a team winning ranges of games, such as “less than 4 home games” or “between 8-10 home 
games”. The probabilities, respectively, are given by equations (3) and (4). 

 Pr(x<4) = P(0) + P(1) + P(2) + P(3)  (3) 
 Pr(8≤x≤10) = P(8) + P(9) + P(10)  (4) 

 These probabilities can be important for estimating how many wins a team will get based 
solely on how many home and away games they have; however, an individual team has an average 
probability of winning of 0.5729. 
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Yardage 
To find the correlation, if any, between yardage and winning, we originally chose to collect 

data from the New England Patriots’, Carolina Panthers’, and Denver Broncos’ 2014-2015 NFL 
season. We predict the relationship between percent yards and percent points to be about 1:1 and 
for there to be a low correlation. We predict that total yardage will not be a reliable way to predict 
the winner of a game. We chose to only collect data from one season so that there would be fewer 
changing variables, such as changes in players or coaches. We decided to find the percentage of 
total yards ran and the percentage of the total points scored by each team in each game. Then, a 
scatter plot was used to visually compare the data, as shown in Figure 3.  

 

 
Figure 3: Scatter plot comparing yardage to points in individual football games of three football teams in 

2014-2015 NFL season. 
 

As expected, the linear trendline has a slope of about 1. The data had a Pearson correlation 
coefficient of 0.5088. The correlation coefficient suggests a moderate relationship. It is clear that, 
since running yards is required to gain points, there should be a positive relationship between the 
yards ran and the points scored by a team. There is also a high likelihood that other variables affect 
both a team’s yardage and score. 
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We decided that the data collected from the three teams was not an accurate representation 
of the NFL. Each team chosen for our sample won their division, which could possibly bias the 
results. Additionally, three teams is a small sample for a population of 32 teams. We decided to 
include two more teams into our data. We collected additional data for the Tennessee Titans, who 
lost their division, and the San Francisco 49ers, who had an equal number of wins and loses in 
2014. A scatterplot of the new data for these five teams is shown in Figure 4. 

 

 
Figure 4: Scatter plot comparing yardage to points in individual football games of five football teams in 

the 2014-2015 NFL season. 
 

By adding two more teams, the Pearson correlation coefficient increased to 0.6286, without 
dramatically changing the slope of the trendline. The more teams and seasons we include in our 
sample, the better representation we will have of the data. We decided that 5 teams in a single 
season is a sufficiently large sample for our purpose. 

 In this study, we want to find out if past total yard percentages are a reliable way to predict 
the outcome of a game. We hypothesize that the team with the highest previous average number 
of yards will win the game. Before testing our hypothesis, we wanted to determine if teams who 
run more yards are generally ranked higher. To show this, we made a boxplot, shown in Figure 5, 
comparing the distribution of yards run by each team in each game.  
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Figure 5: Distribution of each team’s yardage throughout the 2014-2015 NFL season. 
 
The patriots, who won the Superbowl, have the second highest average of the five teams. 

Otherwise, the results are as expected. The titans, who did the worst, have the lowest average, 
follows by the 49ers, who were the next worst team of the five. There are no outliers in the data, 
but each data set has a large deviation from the mean. This suggests that better teams run more 
yards, but a team's yardage still varies greatly from game to game, likely due to changes in 
conditions and strategies of the opposing team. 

 To test the hypothesis, we found the average number of yards ran by a team and their 
opponent in all past games of the season. If past yardage can be used to predict the winning team 
of a game, the team with the largest sum of yards should win the game. In order to obtain the 
largest data set, we will observe the last game of each team’s season, summing up the yardage of 
their first 15 games. When this method was applied, the total yardage only successfully predicted 
the outcome of the game three out of the five games studied. 

Finally, we decided to use the binomial model to find the probability that the team with the 
most yards will win in every game of the season. We have data for five teams, each playing 16 
games in 2014, giving us a total of 80 trials. Since each game is independent and has no bearing 
on other games, we can use this method. We defined success as the team with the most yards in a 
game having the most points. Of the 80 trials, 69 were successful, making the probability of 
success 0.7375. Using the binomial equations (4) and (5), we found that there is only a 0.00049% 
chance that less than 40 of 80 trials will be successful. There is a 35.817% chance that at least 60 
of 80 new trials will be successful. It is almost certain that the team that runs the most yards will 
win at least half the time, but we cannot expect all the trials to be successful.  
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 x ~ Bin(p=0.7375, n=80) (5) 
We have shown that there is a positive relationship between the number of yards a team 

runs and the percentage of the total points that team won. However, yards ran in previous games 
is a poor indicator of who should win a game. 

Table 3: Data used in the analysis of each of the 5 teams in our sample. 
Team	 Patriots	 		 Panthers	 		 Broncos	 		 Titans	 		 49ers	 		

Game	 %	yard	
%	

points	 %	yard	
%	

points	 %	yard	
%	

points	 %	yard	
%	

points	 %	yard	
%	

points	
1	 0.47	 0.38	 0.56	 0.59	 0.47	 0.56	 0.44	 0.41	 0.53	 0.44	
2	 0.57	 0.81	 0.49	 0.77	 0.46	 0.59	 0.51	 0.23	 0.54	 0.41	
3	 0.55	 0.64	 0.43	 0.34	 0.46	 0.43	 0.57	 0.66	 0.54	 0.57	
4	 0.40	 0.25	 0.41	 0.21	 0.73	 0.67	 0.59	 0.79	 0.27	 0.33	
5	 0.61	 0.72	 0.48	 0.56	 0.64	 0.65	 0.52	 0.44	 0.36	 0.35	
6	 0.54	 0.63	 0.46	 0.50	 0.57	 0.71	 0.54	 0.50	 0.43	 0.29	
7	 0.43	 0.52	 0.48	 0.31	 0.58	 0.63	 0.52	 0.69	 0.42	 0.38	
8	 0.56	 0.69	 0.46	 0.41	 0.54	 0.33	 0.54	 0.59	 0.46	 0.67	
9	 0.46	 0.67	 0.38	 0.26	 0.68	 0.71	 0.62	 0.74	 0.32	 0.29	
10	 0.61	 0.68	 0.46	 0.32	 0.54	 0.24	 0.54	 0.68	 0.46	 0.76	
11	 0.57	 0.79	 0.53	 0.47	 0.59	 0.52	 0.47	 0.53	 0.41	 0.48	
12	 0.40	 0.45	 0.62	 0.30	 0.72	 0.64	 0.38	 0.70	 0.28	 0.36	
13	 0.65	 0.62	 0.62	 0.80	 0.42	 0.59	 0.38	 0.20	 0.58	 0.41	
14	 0.51	 0.76	 0.58	 0.53	 0.54	 0.69	 0.42	 0.47	 0.46	 0.31	
15	 0.43	 0.52	 0.64	 0.57	 0.52	 0.43	 0.36	 0.43	 0.48	 0.57	
16	 0.49	 0.35	 0.52	 0.92	 0.69	 0.77	 0.48	 0.08	 0.31	 0.23	
 
Player Rankings 
The player rankings parameter was used to identify if there was a correlation between the amount 
of top ranking players and each team’s chance of winning per game.  Each team was given a certain 
number of points for every top 100 player on its roster, based on the ranking assigned at the end 
of the season. The number 1 player gave 100 points to his team whereas the number 100 player 
only gave one point to his team. Once all the top 100 players had given the amount of points they 
were worth to their respective teams seen in Table 4, we created a scatterplot of the player points 
compared to the team ranking seen in Figure 6. 
 
 
 
 
 
 
 

Table 4: Player points and percentage of player points per team. 

144



 
 

Nielsen, Riley, Sunderland 10 

 

Team Player Points Percent of  Player Points 
49rs 0 0.00 

Bears 52 1.06 
Bengals 63 1.29 

Bills 241 4.92 
Broncos 260 5.31 
Browns 185 3.78 

Bucaneers 141 2.88 
Cardinals 114 2.33 
Chargers 119 2.43 

Cheifs 230 4.69 
Colts 201 4.10 

Cowboys 222 4.53 
Dolphins 199 4.06 

Eagles 217 4.43 
Falcons 110 2.24 
Giants 68 1.39 
Jaguars 79 1.61 

Jets 197 4.02 
Lions 173 3.53 

Packers 298 6.08 
Panthers 124 2.53 
Patriots 196 4.00 
Raiders 87 1.78 
Rams 64 1.31 

Ravens 181 3.69 
Redskins 125 2.55 

Saints 70 1.43 
Seahawks 506 10.33 
Steelers 217 4.43 
Texas 119 2.43 
Titans 4 0.08 

Vikings 38 0.78 
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Figure 6: Player points versus team rankings for the 2014-2015 NFL season with a best fit line. 

 
While the best fit line does not provide a very good fit to the data, a trend does appear in 

that the teams with fewer player points do tend to have a lower team rank than the teams with more 
player points. This trend has a moderate relationship with a Pearson correlation coefficient of 0.42. 
There is one potential outlier belonging to the Seattle Seahawks who not only had the most players 
in the top 100, but also all their top 100 players had high rankings giving them an overwhelming 
amount of player points. It is no coincidence that the Seahawks were also ranked number one at 
the end of the season. The Seahawks were also one of the contenders in the 2015 Super Bowl 
though they did lose to the New England Patriots who were then ranked number 6. The Patriots 
did not have one of the most player points but actually were closer to the average number of player 
points per team. Other discrepancies in the data show that the team with the fourth highest amount 
of top ranked players was in the bottom 25% of the team rankings; meanwhile, two of the top three 
teams had less than 100 player points, which was below average, and still managed to be the second 
and third ranked teams in the country.  

To find how far this discrepancy goes, we derived the average percentage of player point 
differences for each team. This was done by using equation (6). That way, we could find the 
percentage of player points belonging to each team for each game. 
 %	𝑃𝑙𝑎𝑦𝑒𝑟	𝑃𝑜𝑖𝑛𝑡𝑠	𝑜𝑓	𝐵𝑎𝑠𝑖𝑠	𝑇𝑒𝑎𝑚

%	𝑃𝑙𝑎𝑦𝑒𝑟	𝑃𝑜𝑖𝑛𝑡𝑠	𝑜𝑓	𝐵𝑎𝑠𝑖𝑠	𝑇𝑒𝑎𝑚 +%𝑃𝑙𝑎𝑦𝑒𝑟	𝑃𝑜𝑖𝑛𝑡𝑠	𝑜𝑓	𝑂𝑡ℎ𝑒𝑟	𝑇𝑒𝑎𝑚 
(6) 

 Once this was done for each team, we got the average of those percentages and compared 
them to the actual percentage of games won by that team. For example, the Seahawks have 10.33% 
of all the player points. When playing against the Bears who have 1.06% of all the player points, 
the Seahawks have a 90.68% of all the player points giving them a 90.68% chance of winning that 
game based only the amount of top ranked players per team. We then continued to get the chance 
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of winning a game against every other team and averaged all those probabilities to show that the 
Seahawks have a 79.24% chance of winning a game. After gathering the chance of winning a game 
for each team, we compared these chances to the actual percentage of games won by each team 
shown in Table 5. 

Table 5: Comparison between predicted games won and actual games won for each team during the 2014-2015 
NFL season. 

Team Actual Win % Predicted Win % 
Absolute Value 

Difference % Difference 
49ers 46.67 0 46.67 infinite 
Bears 33.33 32.23 1.1 3.412969283 

Bengals 73.33 35.93 37.4 104.0912886 
Bills 53.33 65.16 11.83 18.15531001 

Broncos 73.33 66.75 6.58 9.857677903 
Browns 46.67 59.41 12.74 21.44420131 

Buccaneers 13.33 53.33 40 75.00468779 
Cardinals 73.33 48.56 24.77 51.00906096 
Chargers 60.00 49.52 10.48 21.1631664 

Chiefs 53.33 64.16 10.83 16.87967581 
Colts 66.67 61.24 5.43 8.866753756 

Cowboys 73.33 63.4 9.93 15.66246057 
Dolphins 53.33 61.02 7.69 12.60242543 

Eagles 60.00 62.91 2.91 4.625655699 
Falcons 40.00 47.76 7.76 16.2479062 
Giants 40.00 37.46 2.54 6.780565937 
Jaguars 20.00 40.57 20.57 50.70248952 

Jets 20.00 60.79 40.79 67.09985195 
Lions 73.33 57.92 15.41 26.60566298 

Packers 73.33 69.55 3.78 5.434938893 
Panthers 46.67 50.44 3.77 7.474226804 
Patriots 80.00 60.68 19.32 31.83915623 
Raiders 20.00 42.62 22.62 53.07367433 
Rams 40.00 36.24 3.76 10.37527594 

Ravens 60.00 58.92 1.08 1.83299389 
Redskins 26.67 50.62 23.95 47.3133149 

Saints 40.00 38.05 1.95 5.124835742 
Seahawks 73.33 79.24 5.91 7.458354366 
Steelers 53.33 62.91 9.58 15.22810364 
Texans 53.33 49.52 3.81 7.693861066 
Titans 13.33 6.38 6.95 108.9341693 

Vikings 46.67 26.73 19.94 74.59783015 
Average 50.00 50.000625 13.8078125 29.24492082 
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 Continuing with the Seahawks example, the Seahawks won 73.33% of their games making 

the absolute difference betwen the chance of winning a game and the actual games won 5.91 and 
the percent difference in predicted win percentage of games and actual games won 7.46%.  In the 
end, the average absolute difference was 13.81 and the average percent difference was 29.24% 
therefore we are able to predict the amount of games won by each team with a success rate of 
70.76%. There are a few outliers in this data that are important to note. One of which is the fact 
that for the 2014-2015 NFL season, the San Francisco 49ers had no players ranked in the top 100 
players for that season. So according to the model, the 49ers should not have won any games, but 
in reality they won 44% of their games. This would turn out an infinite percent difference which 
would throw off the success rate. For that reason, the 49ers were not included in this model except 
to be compared to other teams and giving the other teams a 100% chance of beating the 49ers. 
Other outliers include the Bengals and the Titans who had more than a 100% difference. These 
huge percent differences were countered by most of the other teams who had percent differences 
below 10%.  
 
Discussion: 
 

After reviewing each parameter, we compared their ability to predict a winner. The 
percentage of player points had a success rate of 70.76%, the number of yards a team ran by each 
team had a success rate of 60.00%, and the home field advantage had a 57.29% success rate.  

While home field advantage was found to have the least impact on the game, it is the only 
parameter that can be determined before the season begins. With no prior knowledge of the season, 
home field advantage can pick the winner 57.29% of the time. To use yardage as a predictor, teams 
must play games first. The more games each team plays, the more data we have to predict the 
winner. Player rankings are given after the season, so we cannot use that season’s ranking to predict 
a winner of a game. We could make a prediction based on past season rankings, but this will not 
be as accurate and could leave holes in the data due to new players being drafted and older players 
being let go. 

Depending on which data and how much data each person has, any of the three proposed 
factors could have different benefits when comparing two teams head to head. In addition, it may 
be more helpful to look at an individual team’s factor percentages over multiple years in case one 
team always plays better at home, or tends to score more points with less yards. These parameters 
could be improved by increasing the sample size with more teams and more seasons.  
 
Conclusion: 
 
In this project, we confirmed that in each data sample, there was a correlation between each 
parameter chosen and chance of winning. Additionally, each parameter was successful in 
predicting the winner of a game the majority of the time. Through the project we determined the 
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most reliable factor in predicting a team’s chance of winning a game is the percentage of player 
points, followed by the number of yards a team ran and passed and the least reliable factor being 
whether the team played at home or away. 
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1.) Introduction 
 
A posted speed limit on a given Texas road only indicates the safest maximum speed               

drivers should travel ‘in good conditions’ (clear weather, in daylight, and on dry roads). The               
Texas Department of Public Safety [7] recommends that drivers slow their speeds and drive              
more cautiously in unsafe driving conditions. In spite of these recommendations thousands of             
drivers are involved in car accidents that result in fatalities or injuries every year on Texas roads.                 
We wanted to determine if poor weather and poor road conditions were less safe than ideal road                 
conditions (dry roads and clear/sunny weather). This research paper examines several different            
weather conditions (clear, fog, rain, sleet/snow), and their resulting road conditions (dry, wet,             
and icy) to determine the relationship, if any, between poor weather/road conditions and             
driving-related injuries and fatalities on Texas roads between 2006 and 2015. 
 
 

2.) Statement of the Problem 
 

There are several things we wanted to learn from our research. First, we wanted to know                
in which type of weather and on which road conditions a person is most likely to get into a crash,                    
get into a fatal crash, and to be injured in a crash simply based upon the raw data. Secondly, we                    
wanted to know the probability of there being x​1 ​fatalities/injuries in dry road conditions, x​2               
fatalities/injuries in wet road conditions, and x​3 fatalities/injuries in icy road conditions in a given               
year. Thirdly, we wanted to know which weather condition is the worst to drive in when taking                 
into account the number of days a year of that particular weather condition. 

We predicted that clear weather and dry road conditions would produce the fewest             
weather related car accidents for both fatal accidents and accidents in which injuries are              
sustained. Our initial analysis of this data did not support this prediction which led us to pursue                 
question three. For the new model which takes into account the number of days of each type of                  
weather per year, we predicted that the number of accidents per day of rain, sleet/snow, and fog                 
will be greater than the number of accidents per day of clear weather. This follows more closely                 
to our initial intuition; a more indepth analysis of these phenomena is included in the Results                
section.  
 
 

3.) Methodology  
 

We wanted to connect our project back to probability and statistics by observing the              
probabilities of getting into certain car accidents using several different techniques. Our first             
approach was used in an attempt to answer our first question, “In which type of weather and on                  
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which road condition is a person most likely to get into a car crash, a fatal crash, and be severely                    
injured in a crash?” 

To collect data, we went to the Texas Department of Transportation website [6] where we               
found comprehensive data for all of the car accidents in the state of Texas. The data were                 
separated by weather type as well as road condition for the years 2003-2015. We decided to                
focus only on 2006-2015 and omit the data from 2003, 2004, and 2005 simply because we                
wanted to limit the scope of our project, and we felt that ten years was a healthy sample. We                   
also thought that it was important not to go back too far, so that we did not risk our results being                     
skewed due to changing technology, long-term changes in climate, laws, or culture.  

The site had data for the weather categories: blowing dust, blowing sand/snow,            
clear/cloudy, fog, rain, severe crosswinds, sleet/hail, smoke, snow, other, and unknown. We            
chose to overlook the data from other and unknown as we felt it would not contribute to the                  
overall conclusions of our project. We combined the data for sleet and snow into one sleet/snow                
category since they were effectively the same for our purposes. We also did not use the data from                  
the blowing dust, blowing sand/snow, severe crosswinds, and smoke as these categories had very              
low contributions to the total crashes and they seemed to be less significant to the focus of our                  
project. Regarding road conditions, the data on this site was divided into the following              
categories: dry, ice, sand/mud/dirt, snow, standing water, wet, other, and unknown. Again, we             
chose to leave out the other and unknown categories for the same reasons, and we did not use the                   
sand/mud/dirt, slush, or standing water categories as we felt that they were less significant than               
the others. This left us with five weather condition categories: clear/cloudy, fog, rain, sleet,              
snow, and three road condition categories: dry, icy, and wet. Our data for total accidents, fatal                
accidents, and accidents resulting in injuries for road conditions and weather conditions are all              
shown in the tables located in Appendix A. 

To analyze our data in an attempt to answer our first question, we first used several bar                 
charts to visually display the results from our data acquisition. We used bar charts because the                
data is categorical. Then we found the probability of getting into an accident, getting into a fatal                 
accident, and getting into an accident resulting in injury for each road condition and each               
weather type. To find the probability of being injured in a crash for dry road conditions, we                 
divided the average number of car crashes resulting in injuries for dry road conditions by the                
averaged total for each type of crash for all of the road conditions. We repeated this process for                  
each weather category and each type of road condition for each type of accident and calculated                
the probabilities shown in Appendix C. 

Regarding the second question, we analyzed our data using a multinomial model.            
Originally we considered a binomial model because we had a select number of trials, we knew                
what a success was, and we could find the probability of each success. However, the binomial                
model did not account for the number of categories contained in our data, which led us to                 
implement the multinomial model. A multinomial model is used to create a logistic regression of               
data with more than two possible discrete outcomes. In the model for car accidents during               
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specific road conditions, we defined x​1 as the fatalities/injuries in dry road conditions, x​2 as the                 
fatalities/injuries in wet road conditions, and x​3​ as the fatalities/injuries in icy road conditions.  

 

 
Figure 1​ : Multinomial model used to represent the data for fatalities due to road conditions. This model can also be 

used to represent injuries and total car accidents due to road conditions. 
 
The trouble was that ​N​ very large and as a result ​N! was impossible to calculate without a                  

supercomputer. Similarly, to model the probabilities of getting into a car accident under certain              
weather conditions we used a multinomial model. In this model, we defined ​x​1 as the               
fatalities/injuries in sunny/clear weather conditions, x​2 as the fatalities/injuries in rainy           
conditions, x​3 as the fatalities/injuries in foggy weather conditions, and x​4 as the fatalities/injuries              
in sleet/snowy weather conditions. Again, the value of ​N! was too large to be calculated without                
the use of a supercomputer.  

 

 
Figure 2​ : Multinomial model used to represent the data for fatalities due to weather conditions. This model can also 

be used to represent injuries and total car accidents due to weather conditions. 
 
We were suspicious that our first model did not provide an accurate indication of which               

weather condition was the worst to drive in, so we decided to do further research in an attempt to                   
answer question 3. We found sources [3], [8], [2], and [1] which listed average days of sunshine,                 
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fog, snow/sleet, and rainy weather, respectively, for roughly 60 major cities in Texas. For the               
purposes of this research paper, we had to assume that the Texas climate is uniform across the                 
state. We took the sum of all of the days of sunshine, rain, fog, and snow/sleet, and divided them                   
by the total number of cities we had data for to calculate the average days of each type of                   
weather for the state of Texas. We felt our calculations (as shown in Table 1 below) were                 
feasible approximations as the total days of each type of weather added up to 365.25 days. 

 
Table 1​ : Average days of weather in Texas assuming weather is uniform across the entire state 

Weather Type Rain Snow/Sleet Fog Sunshine/ 
Clear Total 

Average Days 
of weather  99 1.15 135.5 129.6 365.25 

 
We then calculated the probabilities of getting into a car accident, a fatal car accident,               

and an accident resulting in injury for our four types of weather: clear, fog, rain, and sleet/snow.                 
We used the same method from question one to find the probabilities for question three. We took                 
the number car accidents with each outcome during a given weather condition and divided these               
values by the averaged total of each type of accident for each type of weather condition as shown                  
in the pie charts in Figures B.13-B.18.  

 
  

4.) Results 
 

One thing that is troubling about our data is that it is statewide meaning that there is no                  
distinction between rural and urban roads. For this reason, we cannot see how the different               
weather and road conditions affect the amount of crashes on different types of roads and in                
different areas. Statewide data also causes concern about the difference in local climates. Texas              
is a very large state with varying terrain and respective climates. For example, the panhandle has                
a very different climate than the gulf coast. We were able to find data for local weather climates                  
in Texas based on different major cities in several regions of Texas, but we had to assume that                  
the weather was uniform across the entire state of Texas even though we know that is inaccurate. 

In spite of the limitations of our data, our statistical analysis provided intriguing results.              
The bar charts shown in Figures B.1, B.3, B.5, B.7, B.9, and B.11 were created to analyze the                  
raw data and show that clear days account for the vast majority of the total car accidents, fatal                  
car accidents, and accidents involving serious injury. It wasn’t until these bar charts were              
cropped that accidents due fog, rain, sleet/snow and wet or icy could be seen on the weather                 
condition and road condition graphs. This is shown even further in the pie charts located in                
Figures B.2, B.4, B.6, B.8, B.10, and B.12 where the clear weather condition probability              
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overwhelms the probabilities for fog, rain, and sleet/snow, and dry road condition probabilities             
overwhelm the probabilities for wet or icy for total accidents, fatal accidents and accidents              
resulting in injury.  

Unfortunately, we were not able to compute actual values for our multinomial model due              
to our limited computational power. Though the model allowed us to explore the theoretical              
representation of these probabilities.  

After seeing such a large proportion of of accidents attributed to clear weather conditions,              
we removed the clear weather data condition from our analysis. This allowed us to focus only on                 
accidents that occurred during poor weather conditions. The probability of being involved in an              
accident during rainy, foggy, or sleet/snowy weather conditions is shown in Figures B.19-B.21,             
along with the pie charts for fatal accident and accidents that result in an injury. These pie charts                  
indicate that rainy conditions are the most dangerous type of weather to drive in.  

Furthermore, once we took into account the frequency of each type of weather we              
produced the pie charts shown in Figures B.25-B.27. In these charts we saw that clear weather                
still accounts for the majority of accidents, but it no longer completely overshadows the other               
types of weather. Taking this a step further, we again decided to remove the clear weather data                 
from our analysis for a better understanding of the effect of weather on car accidents. These pie                 
charts are shown in Figures B.28-B.30. These charts show that snow and sleet account for the                
majority of car accidents per day of snow or sleet, followed by rain and least of all fog.  

Another interesting result of our data analysis was that in 2009 there was a huge decrease                
in injuries due to car accidents for clear weather. We were intrigued as to why this drop was so                   
large, and after more research we found that the Texas state Congress passed a plethora of bills                 
regarding road and traffic safety in this year. Among these bills were House Bill 537 which                
declared that everyone in a car must wear a seatbelt and House Bill 55 which prohibited the use                  
of a hand-held communication device while driving. This was done in an attempt to curtail such                
high injury and fatality rates from automobile accidents. Our data suggests that these bills may               
have been successful, but further testing would be required to be sure. 
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Appendix A 
Tabulated Raw Data 
 
Table A.1  

 
 
Table A.2 

 
 
Table A.3 

 
 
Table A.4 

 
 

7 

159



 

Table A.5 

 
 
Table A.6 
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Appendix B 
 

 
Figure B.1:​  Bar chart showing the fatal car crashes due to weather conditions from our raw data.  

 

 
Figure B.2:​  Bar chart showing the fatal car crashes due to weather conditions from our raw data. Bar charts are 

zoomed in to minimize skew from clear data category. 
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Figure B.3:​  Bar chart showing the fatal car crashes due to road conditions from our raw data  

 
Figure B.4​ : Bar chart showing the fatal car crashes due to road conditions from our raw data. Bar charts are 

zoomed in to minimize skew from dry data category. 
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Figure B.5:​  Bar chart showing the car accidents resulting in injuries due to weather conditions from our raw data. 
 

 
Figure B.6:​  Bar chart showing the car accidents resulting in injuries due to weather conditions from our raw data. 

Bar charts are zoomed in to minimize skew from clear data category. 
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Figure B.7:​  Bar chart showing the car accidents resulting in injuries due to road conditions from our raw data.  
 

  

Figure B.8:​  Bar chart showing the car accidents resulting in injuries due to road conditions from our raw data. Bar 
charts are zoomed in to minimize skew from dry data category. 
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Figure B.9:​  Bar chart showing the total car accidents due to weather conditions from our raw data. 

 
Figure B.10:​  Bar chart showing the total number of car accidents due to weather conditions from our raw data. Bar 

charts are zoomed in to minimize skew from clear data category. 
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Figure B.11:​  Bar chart showing the total number of car accidents due to road conditions from our raw data.  

 
 

 

Figure B.12:​  Bar chart showing the total number of car accidents due to road conditions from our raw data. Bar 
charts are zoomed in to minimize skew from dry data category. 
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Figure B.13:​  Pie chart showing the probabilities of car accidents resulting in fatalities due to weather conditions 

based upon our raw data.  

Figure B.14:​  Pie chart showing the probabilities of car accidents resulting in fatalities due to road conditions based 
upon our raw data.  
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Figure B.15:​  Pie chart showing the probabilities of car accidents resulting in severe injuries due to weather 
conditions based upon our raw data.  

 
Figure B.16:​  Pie chart showing the probabilities of car accidents resulting in severe injuries due to road conditions 

based upon our raw data. 
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Figure B.17:​  Pie chart showing the probabilities of total car accidents due to weather conditions based upon our 
raw data.  

 

Figure B.18:​  Pie chart showing the probabilities of total car accidents due to road conditions based upon our raw 
data.  
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Figure B.19:​  Pie chart showing the probabilities of fatal car accidents due to weather conditions based upon our 
raw data without the clear conditions represented. 

Figure B.20:​  Pie chart showing the probabilities of car accidents resulting in severe injuries due to weather 
conditions based upon our raw data without the clear conditions represented. 
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Figure B.21:​  Pie chart showing the probabilities of the total number of car accidents due to weather conditions 
based upon our raw data without the clear conditions represented. 

 

 
Figure B.22:​  Bar chart showing the number of fatal car accidents due to weather conditions per day of that type of 

weather. 
 

19 

171



 

 
Figure B.23:​  Bar chart showing the number of car accidents resulting in severe injuries due to weather conditions 

per day of that type of weather. 

 
Figure B.24:​  Bar chart showing the total number of car accidents due to weather conditions per day of that type of 

weather. 
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Figure B.25:​  Pie chart showing the probabilities of fatal car accidents due to weather conditions per day of that 

type of weather. 

 
Figure B.26:​  Pie chart showing the probabilities of car accidents resulting in severe injuries due to weather 

conditions per day of that type of weather. 

21 

173



 

Figure B.27:​  Pie chart showing the probabilities of the total number of car accidents due to weather conditions per 
day of that type of weather. 

 

Figure B.28:​  Pie chart showing the probabilities of fatal car accidents due to weather conditions per day of that 
type of weather without the clear conditions represented.
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Figure B.29:​  Pie chart showing the probabilities of car accidents resulting in severe injuries due to weather 
conditions per day of that type of weather without the clear conditions represented.

Figure B.30:​  Pie chart showing the probabilities of the total number of car accidents due to weather conditions per 
day of that type of weather without the clear conditions represented. 
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Appendix C 
 
Table C.1​ : Fatal car accidents: n values and probabilities due to weather. 

n​1 n​2 n​3 n​4 p​1 p​2 p​3 p​4 

29098 428 1953 146 0.9201 0.01353 0.06175 0.00462 

  
Table C.2​ : Fatal car accidents: n values and probabilities due to road conditions. 

n​1 n​2 n​3 p​1 p​2 p​3 

24040 185 2626 0.98175 0.00756 0.010069 

 
Table C.3​ : Car accidents resulting in injury: n values and  probabilities due to weather. 

n​1 n​2 n​3 n​4 p​1 p​2 p​3 p​4 

890335 5651 84546 4478 0.90388 0.00577 0.08583 0.00455 

 
Table C.4​ : Car accidents resulting in injury: n values and  probabilities due to road conditions. 

n​1 n​2 n​3 p​1 p​2 p​3 

669759 6312 95817 0.86769 0.00818 0.12413 

 
Table C.5​ : Total number of car accidents: n values and  probabilities due to weather. 

n​1 n​2 n​3 n​4 p​1 p​2 p​3 p​4 

3888802 23179 408331 24950 0.89495 0.00533 0.09397 0.00574 

 
Table C.6​ : Total number of car accidents: n values and  probabilities due to road conditions. 

n​1 n​2 n​3 p​1 p​2 p​3 

3138295 37651 484235 0.85742 0.01029 0.13229 
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Introduction 

 The majority of election forecasters predict the outcome of elections based on polling data. 

Forecasts are of particular interest when trying to determine the outcome of the presidential election. By 

relying on state and national polls, sites like FiveThirtyEight attempt to name the winning candidate by 

using information on current public opinion. FiveThirtyEight has a statistical model that weights polls 

according to sample size, how recently it was taken, and known biases to account for the inherent 

uncertainty in polling. This site also combines historical, economic, and demographic information to make 

a more accurate prediction. This is similar to the strategies employed by other forecasters. However, in the 

wake of the outcome of this election, it is clear that the method used by these forecasters was flawed. Major 

news outlets like NBC, ABC, CNN, and FOX all predicted that Hillary Clinton would be the next president 

while in actuality, Donald Trump was elected. Even FiveThirtyEight, a site that prided itself on its correct 

prediction of the election outcome in 2008 and 2012, gave the victory to Clinton. Election predictions can 

have important effects on voter turnout by discouraging or encouraging certain voters, voter engagement, 

and public opinion. Swayed public opinion can then influence future polling data. Predictions can also sway 

the focus of media coverage of candidates. In light of this, it is important to make sure that election 

predictions are accurate. Because major election predictions incorrectly named Clinton as the winner of the 

election, it is worthwhile to investigate if there is a more accurate way to predict the outcome without 

relying on current polling data. 

Statement of Problem 

 Polling data can be unreliable because it can be hard to find accurate and truly random samples. 

When the sample is not random, the poll is not likely to be a good representation of the total population of 

the state or the nation. This affects the forecasts made based on the information provided by the polls. Our 

purpose is to determine if using historical data can make a more accurate prediction of the outcome of the 

2016 election than polling data. We are choosing to focus on the historic voting record and patterns for all 

fifty states and the District of Columbia, whose votes are counted separate from Maryland, and 

unemployment rates immediately preceding the election. Use of historical data will allow us to avoid the 

lack of randomness associated with polling and will show trends that can help us predict future behavior of 

states.  

Methodology 

 To make a prediction of the outcome of the 2016 election, we chose to focus on key states. Key 

states are those whose electoral votes typically go to the winner of the overall election and are important 

for candidates to win. Many states in the country vote for the same party in election after election. There 

are, however, states commonly referred to as “swing” states that could and have voted for candidates of 

either major party even in recent years. These states become the focus of most presidential campaigns and 
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are therefore key in predicting the winner of the election. We used past voting behavior of all fifty states 

and the District of Columbia since 1976 to identify key states. Using election data compiled by The 

American Presidency Project of UC Santa Barbara, we recorded for each election and each state whether it 

was won by the overall winning candidate or not and which party’s candidate actually won each state. For 

the first set of data, which can be found in the first column of Table 1, we coded a win of the state by the 

overall winner as a 1 and a loss as a 0. For each state, the wins and losses were summed and divided by the 

number of overall elections. If the state had a value of 0.8 or above, meaning that in 80 percent of the 

elections it was won by the winning candidate, we identified it as a potential strong predictor. If the state 

had a value of between 0.7 and 0.8, we identified it as a potential moderate predictor. For the second set of 

data, indicated by the second column of Table 1, we coded for which party’s candidate won each state 

regardless of whether they were the winner of the national election. A win by a Republican candidate was 

coded a 0 and a win by a Democrat was coded as a 1. In the analysis of this data, we chose to not include 

Independent candidates. This is because these candidates did not win a state during any of the election years 

we focused on and their share of votes received is minute compared to those received by the major party 

candidates. For this second data set, we similarly summed totals for each state and divided by the number 

of elections in which a major party candidate won the electoral votes of that state. A value of 0.5 meant that 

this state voted for a Republican candidate at the same rate as a Democratic candidate. We identified states 

with that had values within 10 points of 50 percent as potential strong indicators. The upper limit would be 

60 percent, meaning they had a slight historical preference for the Democratic Party, and a lower limit of 

40 percent, which would mean the state would have a slight historical preference for the Republican Party. 

For a state to be considered a key state, it had to have been identified as a potential strong indicator and 

either a potential strong or moderate predictor. If a state was not considered key, we predicted its voting 

behavior to be similar to past behavior. Using the data on which party won each state, we assigned states 

with values less than 0.40 as Republican and states with values greater than 0.60 as Democratic and gave 

their electoral votes to that respective candidate. However, because key states were those shown to have a 

voting record that did not indicate strong preference for one candidate over the other, we choose to look at 

unemployment data, national GDP in comparison to margin of victory for the incumbent party, and the rate 

of change of disposable income growth to find voting preference to see if there is a relationship between 

jumps in the socio-economic factors and a switch in the voting behavior of key states.  

We quantitatively identified the unemployment rate by recording the unemployment rate for each 

key state immediately preceding the November election and comparing this data to how that state voted in 

the election, whether for the incumbent party or against it. We recorded how many states flipped when there 

was a jump in the unemployment rate of either 1, 2, or 3 points or if the rate increased by 40, 50, 75 or 100 

percent. The number of vote flips over the total number of jumps gave us a probability that the state would 
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vote against the incumbent party when there was a substantial increase in the unemployment rate. Only 

once unemployment rates increased by a full 3 points would states begin to show a moderate to strong trend 

of voting for a non-incumbent candidate with a rate of 77.78 percent. Looking at the rate of change of 

unemployment by percentage increases gave a clearer picture. Starting at 50% increase in unemployment, 

states were already willing to switch party votes by 69.23 percent. At a 75% increase, states were willing 

to switch their votes by 77.78 percent. By 100% increase, states turn their votes away from the incumbent 

party 80.00 percent of the time. Unfortunately, for the sake of our predictions, none of our identified key 

states had an increase in unemployment this election cycle by more than 0.2 points and most actually 

decreased in unemployment, thus invalidating our use of the unemployment data. 

Another potential factor we identified was the rate of growth of disposable income in the voting 

pattern of key states. We recorded data from the U.S. Bureau of Economic Analysis for the real disposable 

income for election years 1972 through 2012. These values were used to calculate the percent growth from 

one election year to another for 1976 through 2012. The purpose of this analysis was to find a party 

preference for each key state. For each election that did not include an incumbent candidate (1980, 1992, 

2000, 2008) we compared the growth rate associated with that year to the growth rate associated with the 

previous election year with respect to the party that the key state voted for. We found probabilities that a 

decrease in rate would favor each party and that an increase would favor each party. 

We used a weighted average of the influence of GDP/margin of victory data, unemployment data, 

disposable personal income data, and indicator value to predict how each key state would vote. Because we 

did not use unemployment data, as all of the unemployment rates decreased in each key state from 2012, 

we used the three other categories. We weighted the indicator value as 0.4, because of the fact that states 

are resistant to change and tend to follow historical trends. We weighted GDP as 0.35 because although it 

is an indicator of the margin of victory for the incumbent party, this relationship is weak. There are many 

variables that affect the margin of victory besides GDP and these are not necessarily consistent for every 

election. Finally, we weighted the influence of the growth rate of disposable income as 0.25 because since 

we only could apply it to a decrease in rate, as shown in the Results section, it tended to skew the results 

towards the Democratic party. Each key state was coded as a 0 for Republican or a 1 for Democrat for each 

of the three categories and a weighted average was found for each state. Not all states had data for all three 

categories. When only two of the three could be determined, the weighted average was compared to the 

total of the two weights used rather than 1. An average value over half the weight total was considered a 

Democratic vote and a value under half the weight total was considered a Republican vote. Finally, we 

counted the electoral votes won by each candidate based on our prediction of how each state, key or not, 

would vote. A candidate that received more than 270 votes was considered the victor. 
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Results 

 To identify key states we recorded data on the rate of both whether each state was won by the 

overall winning candidate and which party won each state in all elections starting in 1976 through 2012. 

Those states that were identified as key were Florida, Ohio, New Mexico, Nevada, New Hampshire, 

Vermont, New Jersey, California, Connecticut, Illinois, Michigan, and Maine. Table 1 shows the data used 

to determine the key states. Potential strong predictors are shown in yellow, potential moderate predictors 

in green, and potential strong indicators in orange. Key states, highlighted in red, are those that are a strong 

indicator and either a strong predictor or a moderate predictor.  

Table 1. Identification of Key States 

State Predictor Indicator  State Predictor Indicator 
Alabama 0.60 0.10  Montana 0.60 0.10 
Alaska 0.50 0.00  Nebraska 0.50 0.00 
Arizona 0.60 0.10  Nevada 0.90 0.40 
Arkansas 0.80 0.30  New Hampshire 0.80 0.50 
California 0.70 0.60  New Jersey 0.70 0.60 
Colorado 0.80 0.30  New Mexico 0.80 0.50 
Connecticut 0.70 0.60  New York 0.70 0.70 
Delaware 0.80 0.70  North Carolina 0.70 0.20 
Dist. Of Col. 0.50 1.00  North Dakota 0.50 0.00 
Florida 0.90 0.40  Ohio 1.00 0.50 
Georgia 0.60 0.30  Oklahoma 0.50 0.00 
Hawaii 0.60 0.90  Oregon 0.60 0.70 
Idaho 0.50 0.00  Pennsylvania 0.80 0.70 
Illinois 0.70 0.60  Rhode Island 0.60 0.90 
Indiana 0.60 0.10  South Carolina 0.60 0.10 
Iowa 0.70 0.60  South Dakota 0.50 0.00 
Kansas 0.50 0.00  Tennessee 0.80 0.30 
Kentucky 0.80 0.30  Texas 0.60 0.10 
Louisiana 0.80 0.30  Utah 0.50 0.00 
Maine 0.70 0.60  Vermont 0.70 0.60 
Maryland 0.70 0.80  Virginia 0.70 0.20 
Massachusetts 0.70 0.80  Washington 0.60 0.70 
Michigan 0.70 0.60  West Virginia 0.60 0.40 
Minnesota 0.50 1.00  Wisconsin 0.70 0.90 
Mississippi 0.60 0.10  Wyoming 0.50 0.00 
Missouri 0.80 0.30     
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For all other states, we used historical voting trends to predict the vote. We predicted Donald Trump to 

secure 228 electoral votes based on historical trends and Hillary Clinton to secure 123 electoral votes based 

on historical trends. This left 181 electoral votes to be decided by key states.  

 For elections in which the incumbent party changed, we found that the probability of a Republican 

candidate winning a key state when there was an increase in the growth rate of disposable income was 53.85 

percent. We considered this margin too close to 0.5 to be able to conclusively say that a vote for a 

Republican candidate can be indicated by an increase in the growth rate. However, the probability that a 

Democratic candidate winning a key state when there was a decrease in the growth rate was 84.62 percent. 

We applied the data to the change in growth rate from 2012 to 2016 and found that this would push 

California, Connecticut, Iowa, Maine, Michigan, New Hampshire, New Jersey, and Vermont’s votes blue. 

There was an increase in growth rate for Florida, Illinois, and Nevada, so we could not conclusively say 

which way this factor would influence these states’ votes. 

 By using our system of weighted averages, we found that California, Connecticut, Illinois, Iowa, 

Maine, Michigan, New Hampshire, New Jersey, and Vermont would vote for a Democratic candidate. 

Florida, Nevada, New Mexico, and Ohio were predicted to vote for a Republican candidate. As seen from 

Table 2, not every factor could be considered for every state. This was when the indicator was 0.5 or the 

disposable income growth rate increased. In those cases, the weighted average was considered in reference 

to the total weight value rather than 1. No matter what, the GDP will affect a state’s vote so there was no 

way for there to be a tie.  

Table 2. Voting Predictions for Key States 

  GDP Income Indicator    
 Weight 0.35 0.25 0.4 Average (1) Average (0.75) Average (0.6) 

State 

California 0 1 1 0.65 * * 
Connecticut 1 1 1 1 * * 
Florida 0 * 0 * 0 * 
Illinois 0 * 1 * 0.4 * 
Iowa 0 1 1 0.65 * * 
Maine 1 1 1 1 * * 
Michigan 1 1 1 1 * * 
Nevada 0 * 0 * 0 * 
New Hampshire 1 1 * * * 0.6 
New Jersey 0 1 1 0.65 * * 
New Mexico 0 1 * * * 0.25 
Ohio 0 1 * * * 0.25 
Vermont 1 1 1 1 * * 

 * Indicates N/A       
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Using our method of prediction, we forecasted that Donald Trump would win the election with 286 

electoral votes by a margin of 34 votes. 

Discussion 

 There are many factors that influence a presidential election, many more than our model contains. 

Our model offers a simplistic view of a few key factors, but only for previously identified swing states. In 

the actual election, although we got the result right, we did incorrectly predict the voting behavior of six 

states: Colorado, Iowa, Michigan, New Mexico, Pennsylvania, and Wisconsin. Donald Trump actually won 

with 306 electoral votes and a margin of 74 votes. We were able to get the right outcome, but not every 

state was accurately accounted for, indicating that our model will not necessarily be successful in future 

elections. However, the polling models we first examined were generally unsuccessful in predicting this 

election last year when they had been successful in the past. This suggests that neither polling data nor 

historical data is enough to accurately predict the outcome of the election. Another thing that can be 

improved for our model to perform more accurate predictions may be to adjust our criteria for the indicators 

and predictors. Our cutoff for within one tenth of 0.5 for the indicator and 3 tenths from 1 for the predictor 

could be adjusted to maximize accuracy.  

 The biggest worry for our predictions is that the sample size maybe too small. From 1960 to 2012 

there were only 14 elections. Because some data was unavailable before 1976, we needed to reduce our 

sample size to 10 elections. The patterns seen in the data may therefore change if more election years were 

included which could sway the predictions made. Additionally, there are many factors that influence how 

people, states, and the nation as a whole will vote. The influence of these factors may not be consistent 

election after election and no single factor has more than a moderate influence on voting behavior. Because 

there are so many factors and no one factor is strongly correlated with election data, there is the chance that 

we may have exaggerated patterns. If the model we used in this project were to be applied to future 

elections, we would like to compare the results gained from the key states of this election to random groups 

of states to ensure the patterns seen are not wholly reliant on the key state sample. Adding the effect of 

additional factors would also help make the model more accurate. 

Conclusion 

 Our analysis of historical data allowed us to correctly predict the outcome of this year’s presidential 

election. However, adding the actual voting behavior of states from this year’s election could have an impact 

on the key states we identified previously. Our model is not robust, and therefore may not be accurate in 

future elections. The combination of historical and polling data may produce an even more accurate model. 

The strength of our model is that it does not rely on possibly biased sampling or polling, however, it 

dehumanizes the candidates for both parties. The public may favor one candidate over another for some 

reason that is not reflected in the economy, such as appearing trustworthy. For this year’s election, this may 
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have benefitted our data out due to possible media bias. A model based on polling may be able to pick up 

where our model cannot cover and help steer a final prediction towards a more accurate choice. 
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Introduction: 

Autonomous land vehicles/drones, such as self-driving cars, have entered the 
international spotlight as a viable means of transportation. This presents the challenge of 2-
dimensional navigation in non-ideal conditions, where the vehicle GPS readings will be 
obstructed by interference noise. We have modeled both the drone’s location and GPS readings 
as a Gaussian. This allows for signal processing via a Kalman Filter to predict and update the 
location of the drone. The implementation of Kalman filtering aims to best predict the future 
location of a moving object based on multiple readings of its previous placements. If more data 
is collected from the preliminary trajectory of the object, the prediction of the upcoming location 
will be more accurate. We have decided to focus on this project because we believe that the 
future of autonomous navigation lies in Kalman filtering. If we manage to optimize the 
functionalities of Kalman filters, we could enhance the accuracy of the readings. This means that 
we could potentially live in a society where only self-driving vehicles would exist, substantially 
decreasing the number of driving accidents and shortening the travel times. Our group’s goal is 
to achieve the derivation of a GPS location-tracking model that will determine the precise 
location of the drone using a Kalman Filtering algorithm to eliminate interference noise. 

Statement of the problem: 

The Global Positioning System relies on readings of the time and location of multiple 
satellites in order to calculate the three dimensional Cartesian coordinate of a receiver device on 
Earth. These calculations are so sensitive to errors in measurement that they are only possible by 
taking into account general and special relativity. While Military GPS systems can theoretically 
calculate position within tens of centimeters, in practice, they suffer from interference noise. This 
can be caused by interference sources such as surface conditions, receiver quality, and the 
atmosphere.[1] For estimation of the true values, it can be assumed that the noise has a Gaussian 
distribution. Our goal is to estimate the true values of the x and y coordinates using a Kalman 
filter. 

A Kalman filter is a mathematical algorithm that uses previous measurement data to 
estimate true values in real time. Also known as Linear Quadratic Estimation, this algorithm is 
used to correct statistical noise in measurements. These properties make it well suited for GPS 
signal processing. The resulting estimation is an output depicting where the GPS receiver is most 
likely to be. This is known as a Joint Probability Distribution.[1] 

What we want to achieve: 

In our project, both the noise and distribution are modeled as Gaussians. The location of 
the drone is modeled in a two dimensional Cartesian plane, with x and y coordinates. We are 
using MATLAB to model the kinematics of the drone, as well as to run the Kalman filter 
algorithm and output estimated coordinates as a function of time. Since this is a simulation, the 
estimated coordinates can be evaluated in comparison to the true location of the drone. 
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Methodology: 

Kalman Filter 

The Kalman filter determines the drone’s location, whether the coordinates are detected 
or not. If the drone coordinates are detected, the Kalman filter first predicts its state at the current 
time. The filter then uses the newly detected location to correct the state, producing a filtered 
location. If the sensor data is missing, the Kalman filter solely relies on its previous state to 
predict the object's current location.  

This process involves the use of probability and statistics in order to predict the new 
position of the moving object with a certain percentage of confidence level. The more values are 
read by the filter, the higher this percentage of confidence level becomes. However, if a 
measurement is missed, then the confidence level percentage will start dropping. 

 
Figure 1: Noisy GPS signal is digitally filtered to produce an accurate estimate of true location. 

 

 
Figure 2: Flow chart depicting how the system is modeled [2]. 

a. Drone starts at origin with 0 velocity and fixed acceleration 
b. Simulation begins modeling kinematics of drone 
c. True velocity value is recorded 
d. True position value is recorded 
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e. Noise is modeled with Gaussian distribution 
f. Intensity of noise is set 
g. Noise is introduced to true values and the sum is inputted to the Kalman filter 
h. Kalman filter algorithm: Prior knowledge of state (drone location) is used to predict 

where the drone will be located. This is then updated with the current state measurement. 
i. Kalman filter produces a Multivariate Normal Distribution of the drone’s true position. 

Position of highest probability is graphed as the estimate. 
 

The kinematics of the drone, the noisy GPS signal, and the Kalman-filter signal processing 
are all simulated in MATLAB.  To find the true location of the drone, we used this discrete 
time linear dynamic system with the following state and measurements equations.  

 

Required MATLAB Add-ons: Signal Processing Toolbox, DSP Toolbox 

Step 1. Modeling of Drone Location:  

The following states will be used to describe the position of the drone with respect to time:  

• X coordinate (х) 
• Rate of change of x-coordinate (ẋ) 
• Y coordinate (y) 
• Rate of change of y-coordinate (ẏ) 

 

State Equation:  
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The state equation describes the position and velocity of the GPS receiver using kinematics. k is 
the current time step, and (k-1) is the previous time step. The noise is additive to the position and 
velocity, and is represented by w(k). These equations use the state of the previous time step to 
predict the current time step state, taking noise into account. This allows the Kalman filter to 
estimate the GPS receiver’s position, even if the data is blocked off by an obstruction. 

 

Measurement equation: z(k) = H * x(k) + v(k) 

 

In the observed x position, z1(k) is equal to position x(k) plus noise v(k). In the observed y 
position, z2(k) is equal to position y(k) plus noise v(k). In a system without noise, the state and 
the measurement equations are equal. These equations use measured values and update the 
current state estimate by modifying the predicted state values. By recursively predicting and 
updating, the Kalman filter can create an accurate model of the position of the GPS receiver. The 
longer this algorithm runs, the more accurate this model becomes. 

In the MATLAB code for this model, the drone’s initial conditions are at the origin with a 
velocity of [0, 0]ft/s and constant acceleration of [4, -2]ft/s2. The simulation will then model the 
kinematics of the drone through position and velocity values. 

 

Step 2. Define Noise Intensity 

 
 

 

Noise is summed with the signal, which function is taken as an approximate normal distribution, 
or Gaussian. Using this model, the mean (µ) is set to 0 for both disturbance equations. Q is set to 
5*105 for the variance of noise in x position divided by the number of samples from the 

193



  

5 | P a g e  
 

MATLAB simulation, and R is set to 5*105 for the variance of noise in y position divided by the 
number of samples obtained. 

 

Step 3. Kalman Filter 

The Kalman filter algorithm computes the following two steps:  

1. Prediction: Process parameters x (state) and P (state error covariance) are estimated using 
the previous state.[2] 

2. Correction (or update): The state and error covariance are corrected using the current 
measurement.[2] 
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Results 

 

 
Figure 3: Graph of x position as a function of time. The true x position is shown in blue. The x position 
summed with noise is shown in yellow. The Kalman filter estimation IS shown in orange. It can be 
observed that the estimation becomes much more accurate as more previous data becomes available to 
the algorithm. The average of the noisy signal, shown in green, is very accurate due to the Gaussian 
distribution of the noise. 
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Figure 4: Graph of y position as a function of time. The true y position is shown in blue. The y position 
summed with noise is shown in yellow. The Kalman filter estimation is shown in orange. It can be 
observed that the estimation becomes much more accurate as more previous data becomes available to 
the algorithm. The average of the noisy signal, shown in green, is very accurate due to the Gaussian 
distribution of the noise. 
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Figure 5: Logarithmic graph of mean relative error in y position as a function of time. Again, it can be 
seen that as more previous data becomes available, the model of location becomes vastly more accurate. 
This is because the Kalman filter relies on previous states in order to make accurate predictions. 
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Figure 6: Logarithmic graph of mean relative error in y position as a function of time. Again, it can be 
seen that as more previous data becomes available, the model of location becomes vastly more accurate. 
This is because the Kalman filter relies on previous states in order to make accurate predictions. 
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One challenge is that our data was limited to simulation via mathematical models. An 
applied study would require a real drone and GPS. This would also mean that the noise isn’t 
necessarily Gaussian, due to multiple interference sources. With an increase in our capital 
budget, we could have collected real measurements to compare to our simulations in MATLAB. 
Moreover, our results could improve by increasing the number of MATLAB generated samples. 
We could also have used different distributions of noise, such as Weibull or Lognormal 
distributions as additive disturbances to the collected data. 
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Introduction: 
 
 Fuel and energy efficiency has become a major factor in both production and purchasing 
of automobiles. The goal of this analysis is to observe the factors that may affect efficiency and 
cost in both gas and electric vehicles. As we analyze fuel efficiency for the 1205 gas vehicles and 
30 electric vehicles in our data sample, we hoped to find trends in our data suggesting possible 
distributions that define the data sample. In particular, we analyzed the data and statistics 
regarding the fuel efficiency of both gas and all-electric vehicles as a function of several different 
variables. These variables include the number of cylinders and displacement of the engines in gas 
cars, the retail price of both classifications of automobiles, and the maximum range a car can 
travel on full fuel capacity. For gas cars, we observed that fuel efficiency generally follows a 
lognormal distribution. As for the electric vehicles analyzed, we found the fuel efficiency across 
the sample to display the characteristics of a normal distribution. We then wanted to compare 
these relationships in gas and electric vehicles to evaluate which types of vehicles yield a better 
value for buyers in the 2016 production year.  
 With regard to the data used for this analysis, our group used the government published 
list of all 2016 production gas and electric vehicles in the United States. The government 
published this list along with the general specifications and EPA estimated values for each 
vehicle. Using such a wide variety of vehicles, we were able to maintain an element of 
randomness in our data since each model of a car that a company produces has different general 
specifications than other models that same company or other companies produce.  
 Our overall conclusion is that there are certain trends in gas car efficiency that correlate 
to both price and engine displacement. A model was built in which the price, fuel efficiency, or 
engine displacement could be found given one of the three values initially.  
 
Methodologies: 
 
 We obtained the majority of our data from www.fueleconomy.gov, as well as several 
independent manufacturers’ sites. Our data includes EPA estimated combined highway and city 
fuel efficiency, the number of cylinders in each gas vehicle engine, retail price of each vehicle, 
the engine displacement and battery size for gas and electric vehicles respectively; from this data 
we also calculated maximum range for several vehicles.  
 Prior to analyzing the effects of various factors on fuel efficiency, we wanted to observe 
the general behavior and trends of combined highway and city fuel efficiency using conventional 
fuel for both gas and electric vehicles. Using Minitab, we generated histograms displaying fuel 
efficiency for gas and electric vehicles separately, and used their respective distributions as a 
reference for the remainder of our analysis. We added distribution fits to each histogram, where 
applicable, to establish a general trend to each sample. We then found the median fuel efficiency 
for both gas and electric cars in order to find the best and worst 50 percent of all 2016 model year 
vehicles.  
 The first factor we considered that directly affects fuel efficiency in gas automobiles is 
the number of cylinders in an engine. Since there are mechanical limitations to the number of 
cylinders in most automobile engines, we separated the data according to the number of cylinders, 
giving us seven different classifications. Once we separated the data accordingly, we wanted to 
see if there was a general trend in efficiency according to the number of cylinders in the engines. 
To view this trend in an appropriate manner, we generated a series of boxplots side-by-side to 
show any general trend in the relationship.  
 The next influence on efficiency we considered for gas vehicles was the displacement of 
the engines in gas cars. Displacement relates to the total swept volume of all the pistons in an 
engine from their maximum to minimum volumes, but is independent of the number of cylinders 
in an engine. Our group wanted to show that there was a negative correlation between the number 
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of cylinders in gas vehicles and the combined fuel efficiency of the cars. Plotting the fuel 
efficiency based on the number of cylinders, we found a trend in the data—we then generated a 
non-linear fit to the data, which provided our group with the first of the governing equations that 
characterize our model for finding the expected efficiency of a gas vehicle given engine 
displacement. To test the validity of this governing equation, we also calculated the coefficient of 
determination for this non-linear fit using Minitab. 
 In further analysis of our data, we plotted the MSRP of gas and electric vehicles on 
separate histograms. We fit the histogram displaying gas vehicle price with a lognormal trend line 
and this fit gave the distribution of the different prices of all gas vehicles sampled. The histogram 
for electric vehicle did not have a distribution where a trend line would be applicable. We 
validated this claim with a Q-Q plot. Given a larger data set for electric vehicles, this may have 
been possible. 
 To find our second governing equation, we plotted the MSRP of gas vehicles and their 
efficiency. Applying a non-linear fit to the plot, we now have a way to calculate an expected 
efficiency based on the MSRP of a 2016 gas vehicle. This is applicable to a consumer purchasing 
a car and knowing what efficiency they can expect from their vehicle, given the consumer’s 
purchasing power. We also plotted the MSRP of electric vehicles against their respective 
efficiencies, but the sample size was not large enough to show any correlation between the two. 
 In considering the relationship between efficiency and range of both electric vehicles and 
gas vehicles, we had to incorporate a method, which would accurately determine the predicted 
range for both types of vehicles. The government data provided in [3] provided the range for 
every type of electric vehicle used by consumers in the United States. However, the process for 
calculating the range for all of the gas engines was a more daunting task; [3] provided us with the 
combined highway and city fuel efficiency of every car we desired to analyze, but we had to 
research tank size individually to calculate maximum range. Using (1), we were able to compile 
data for range for gas automobiles. 
 

𝑀𝑖𝑙𝑒𝑠
𝐺𝑎𝑙𝑙𝑜𝑛𝑠

∗ 𝑇𝑎𝑛𝑘	𝑆𝑖𝑧𝑒(𝐺𝑎𝑙𝑙𝑜𝑛𝑠) = 𝑀𝑎𝑥	𝑅𝑎𝑛𝑔𝑒	(𝑀𝑖𝑙𝑒𝑠)	 
(1) 

 
As we progressed with our analysis, we compared the range and fuel efficiency of both 

gas and electric vehicles to analyze any trends that were present. 
 
Results: 
 
 After analyzing our data, we were able to derive a set of equations that act as a model to 
find the expected efficiency (in miles per gallon) for 2016 gas production vehicles, given either 
the price of the car or displacement of the engine. Vice-versa, if we know the efficiency of a 
vehicle, our model can also predict the values for price and engine displacement. Using the 
histogram in Figure 1, we can validate the general accuracy of our model. Displayed below are 
the governing equations for our gas car efficiency model: 
 
Given MSRP: 

𝐸 𝑥 = 304.207 𝑝𝑟𝑖𝑐𝑒 @A.BCADEF (2) 
 
 
Given engine displacement: 

𝐸 𝑥 = 43.38 − 10.57 𝑑𝑖𝑠𝑝 + 1.435 𝑑𝑖𝑠𝑝 B − 0.07219 𝑑𝑖𝑠𝑝 D (3) 
 

The range of a gas vehicle has a weak positive correlation to the fuel efficiency showing 
that more fuel-efficient cars do not necessarily travel farther than inefficient vehicles on one tank 
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of gas, because manufacturers can compensate for poor fuel efficiency by increasing the size of 
the gas tank. Based on our Kelly Blue Book’s average dollar amount spent on new cars in 2016 of 
$33,340, we calculated the expected efficiency to be 27.825 MPG, which closely follows the 
behavior shown in Figure 1 [2]. We were unable to create an adequate model for finding the 
expected efficiency of electric vehicles because there were two very distinct groupings of data, 
which created challenges in finding an accurate fit for the data. The range of the electric vehicles 
seems to be independent of the vehicle’s fuel efficiency as well, most likely due to varying 
battery charging capacities along with the varying battery capacities.  
 
Discussion: 
 
 Having evaluated the effects of the aforementioned factors on efficiency, the results we 
have observed are not particularly surprising. The general trends in efficiency of gas cars as a 
function of price, engine displacement, and the number of cylinders in the engine are negative. 
We can validate this statement using our governing equations for finding expected value of 
efficiency in gas cars, and validate the results using the histogram in Figure 1. 

 
Figure 1: This figure shows the histogram of combined unadjusted fuel efficiency for 2016 production gas vehicles. 

 
Since this histogram is unimodal, right-skewed, and there no significant outliers, we 

chose a lognormal distribution as a fit for the data characterized by 𝑥~𝐿𝑁 3.393, 0.2497 . 
Looking at the efficiency of electric cars, we found that the histogram is unimodal as well, but 
trends more towards a normal distribution than the gas cars. The rough normal fit to the data 
follows the distribution characterized by 𝑥~𝑁 100.6, 129.7321 . 
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Figure 2: This figure shows the histogram of the miles per gallon efficiency equivalent for 2016 production electric vehicles. 

 
 When analyzing the effects the number of cylinders has on the efficiency of gas vehicles, 
we can see that as the number of cylinders in an engine, the efficiency generally decreases. We 
chose to represent this data using a series of boxplots to view the trend in the data as the number 
of cylinders in an engine increases. This group of boxplots shows the general negative trend in 
efficiency as the number of cylinders in a gas engine increases while also showing outlier 
behavior and median values for each cylinder classification. 
 

 
Figure 3: This figure shows a series of boxplots representing the efficiency data for each classification of number of cylinders in gas 

car engines. 
 
 In continuation of our analysis of the factors affecting fuel efficiency, we observed 
engine displacement versus fuel efficiency in gas cars. Figure 4 shows that there is a negative 
relationship with a moderately strong negative correlation between displacement and fuel 
efficiency,  given by a coefficient of determination of 0.65.The general trend followed the pattern 
that as displacement of a gas engine increases, fuel efficiency decreases. We used this plot to 
derive (3), the second governing equation of our gas efficiency model. 
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Figure 4: This figure shows the scatterplot of combined fuel efficiency as a function of engine displacement in liters. 

 
Evaluating the range of the gas vehicle costs in the data set we were using we eliminated 

the high-end super and hyper cars since these cars are unrealistically expensive for the average 
consumer and the cost of these base models is not readily available without further inquiry. This 
data compiled in the histogram of frequency versus MSRP of gas vehicles shows a unimodal right 
skewed plot with the majority of the vehicles being in the $20,000 to $60,000 range shown in 
Figure 5. We then applied a lognormal fit to the histogram to show the trend of the MSRP of gas 
vehicles and found that the lognormal distribution fit the data more closely. We attempted to fit 
the data with a Weibull distribution, but the Weibull did not accurately encapsulate the height of 
the distribution. The lognormal distribution fails to capture the true mode of the data set but more 
accurately represents the mean. 

 

 
Figure 5: This figure shows the histogram of the MSRP for 2016 production gas vehicles. 

 
The MSRP of electric vehicles appears to have a bimodal distribution with the modes 

centered on $30,000 and $75,000 plotted in Figure 6. This is a more reasonable price range for 
the average customer when compared to the higher end of the spectrum.  
 

9876543210

60

50

40

30

20

10

S 3.29864
R-Sq 65.0%
R-Sq(adj) 64.9%

Eng Displ

Co
m

b 
FE

 (G
ui

de
) -

 C
on

ve
nt

io
na

l

Combined Fuel Efficiency (MPG) vs Engine Displacement
Combined Fuel Efficiency (MPG) =  43.38 - 10.57 Eng Displ

+  1.435 Eng Displ^2 - 0.07219 Eng Displ^3

207



 
Figure 6: This figure shows the histogram of the MSRP for 2016 production electric vehicles. 

 
Analyzing the MSRP of electric vehicles in a Q-Q plot, Figure 7, shows that the 

distribution is indeed bimodal characterized by the S shaped curve around the trend line. This 
makes it hard to give a single accurate mean value for a consumer to compare costs against unlike 
with the gas vehicles. 
 

 
Figure 7: This figure shows the Q-Q plot for the MSRP of 2016 production electric vehicles. 

 
The fuel efficiency as it compares to the MSRP of various gas powered vehicles, found in 

Figure 8, is right skewed and unimodal around $25,000. This shows that in general a more 
expensive vehicle does not necessarily correlate to a more efficient vehicle. This is very 
important for a consumer to know because it shows that if they want a very efficient vehicle they 
do not have to pay very much. 
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Figure 8: This figure shows the scatterplot of combined fuel efficiency as a function of MSRP for 2016 production gas vehicles. 

 
Comparing the MSRP of electric vehicles to their efficiency in Figure 9, there is no direct 

correlation to an increase or decrease in price to an increase or decrease in efficiency. This means 
the only distinctions between electric vehicles are the features that they are equipped with; these 
features directly correlate to the prices of these vehicles. The efficiency in this case remains 
relatively constant and does not vary even when the cost of the vehicles ranges from $23800 to 
$134500. 

 
Figure 9: This figure shows the scatterplot of combined fuel efficiency as a function of MSRP for 2016 production electric vehicles. 
 

For the gas vehicles, the data trends towards a slight increase in range as the efficiency 
increases as seen in Figure 10. This implies that the range of the gas vehicles may depends on the 
fuel efficiency of the car.  
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Figure 10: This figure shows the scatterplot of combined fuel efficiency as a function of range for 2016 production gas vehicles. 

 
For the electric vehicles, the fuel efficiency of the cars is generally the same as displayed 

in Figure 11. The difference in range is most likely due to the battery that powers the car. There is 
a subtle difference in efficiency; however, the increase in efficiency does not correlate to a 
significantly larger range capability. 

 
Figure 11: This figure shows the scatterplot of combined fuel efficiency as a function of range for 2016 production electric vehicles. 

 
One of the main reasons behind that fact that fuel efficiency of electric vehicles is 

independent of range is due to the varying battery capacities of the cars, Figure 12. Vehicles with 
larger maximum capacity may not necessarily have a high efficiency but they may still obtain a 
greater range than more efficient vehicles with smaller battery sizes. In terms of the capacity of 
the battery, drivers never fully exhaust all of the power that may be available on a full charge. 
This means the estimated ranges of many vehicles is greater than what they are in practice. 
Additionally, much of the range data provided by manufacturers is idealized because it does not 
take into account an individual consumer’s driving tendencies. Depending upon variables such as 
temperature and the driver’s aggressiveness, the range of each electric vehicle changes 
drastically. 
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Figure 12: This figure shows the scatterplot of range as a function of battery capacity for 2016 production electric vehicles. 
 
 Using the data trends we were able to show an analysis of cars using the median U.S. 
annual income as the value for the MSRP [6]. 
 

We know the median U.S. annual income = $51939 (per Household). Given that x is the 
MSRP of a 2016 production gas vehicle. We want Pr(x < 51939) which will yield the proportion 
of cars that are priced less than the median U.S. annual income. 
Given that: 𝑥~𝐿𝑛	 10.61, 0.5614  
 Pr	(𝑥 < 51939) = Pr	(ln 𝑥 < 51939 ) 
 

𝑧XY Z[EDE =
ln 51939 − 10.61

0.5614
= 0.44144 

 Pr 𝑧 < 0.44144 = 0.67 
This means that 67% of 2016 gas vehicles in production in the U.S. cost below the 

median U.S. annual income of $51939. This is to as predicted, because the majority of consumers 
are not willing to spend their entire annual income on a car so a majority or 67% of the cars 
would need to cost lower than median income for the manufacturers to stay in business.  
 

Given the annual income we can also calculate the expected efficiency E(f) that a gas 
vehicle would have given f is the MSRP of gas vehicles. 
 𝐸 𝑓 = 304.207 𝑓 @A.BCADEF 
 𝐸 𝑓 = 304.207 51939 @A.BCADEF = 22.3655	𝑀𝑃𝐺 

We can validate this calculation by looking at the scatterplot of MSRP and efficiency for 
gas vehicles and, as expected, the value for an MSRP of $51939 falls around 22.4 MPG. 
 
Conclusion: 
  
 Our goals for this project were to observe the factors that may affect efficiency and cost 
in both gas and electric vehicles. In our data analysis, we were able to construct a set of equations 
that act as a model to calculate the expected fuel efficiency of a gas vehicle based on MSRP or 
engine displacement. We were unable to attain equations that accurately predict the fuel 
efficiency of electric vehicles based on MSRP or any other factors. After further analysis, we 
determined that our model for gas vehicles could be used to tell a consumer interested in 
purchasing a new vehicle whether or not they are paying an appropriate value for their new 
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vehicle, given its specified parameters fitting our model. The values we find are expected values, 
or averages, so they are the boundary values for what makes a good deal for the consumer.  
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