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Synaptic plasticity, or the ability of a brain to change one or more of its
functions or structures at the synaptic level, has generated and is still
generating a lot of interest from the scientific community especially from
neuroscientists. These interests went into high gear after empirical evi-
dence was collected that challenged the established paradigm that human
brain structures and functions are set from childhood and only modest
changes were expected beyond. Early synaptic plasticity rules or laws to
that regard include the basic Hebbian rule that proposed a mechanism
for strengthening or weakening of synapses (weights) during learning
and memory. This rule, however, did not account for the fact that weights
must have bounded growth over time. Thereafter, many other rules that
possess other desirable properties were proposed to complement the ba-
sic Hebbian rule. In particular, a desirable property in a synaptic plastic-
ity rule is that the ambient system must account for inhibition, which
is often achieved if the rule used allows for a lower bound in synap-
tic weights. To that regard, in this letter, we propose such a synaptic
plasticity rule that is inspired by the Allee effect, a phenomenon often
observed in population dynamics. We show that properties such as
synaptic normalization, competition between weights, decorrelation po-
tential, and dynamic stability are satisfied. We show that in fact, an Allee
effect in synaptic plasticity can be construed as an absence of plasticity.

1 Introduction

Synapses play an important role in the brain because they are junctions be-
tween the nerves cells. As such, they facilitate the diffusion of chemical sub-
stances called neurotransmitters from the brain to other parts of the body.
During this diffusion, synapses are sometimes modified to adapt to the im-
pulses and their transmission rate. These synaptic modifications may be
due to lived experience and training and can occur at functional and struc-
tural levels. At the functional level, the brain may move functions from
one area to other areas, often from damaged to undamaged ones. At the
structural level, the brain may actually change its physical structure, mainly
some synaptic structures as a result of external activities. Modifications of
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synapses can in turn affect behavior and training; therefore, understand-
ing the dichotomy between synaptic modifications and experience and/or
training is paramount if one wants to have an insight into some brain activi-
ties. Brain plasticity or neuroplasticity can be thought of as the ability of the
brain to adapt to external activities by reorganizing some of its pathways
or modifying some of its synaptic structure.

Early researchers on synaptic plasticity include Hebb (1949), who conjec-
tured that on one hand, synapses from two neurons are often strengthened
if impulses from one neuron contribute to the firing of another. On the other
hand, synapses are weakened if noncoincidental neuronal firings occur. In
essence, this rule infers that synaptic modifications are in direct relationship
with experience and training, and consequently, the mechanisms underly-
ing learning and memory can be understood via these synaptic modifica-
tions. In fact, there is ample empirical evidence consisting of transient and
long-lasting effects (long-term potentiation and depression) starting with
Bliss and Lomo (1973), who experimented plasticity in rabbits. Plasticity
was later experimented in selected regions of the brains, including the hip-
pocampus neocortex and cerebellum (Bear & Malenka, 1994; Bliss & Lomo,
1973; Bussey, 2011; Feldman, 2009; Liu & Nusslock, 2018a, 2018b; Olson
et al., 2006; Siegelbaum & Kandel, 1991; Xu & Kang, 2005).

However, to understand plasticity at the functional level, one needs to go
beyond mechanistic models as described above and find how plasticity re-
lates neurons and/or networks of neurons to the basic rules that govern its
induction (Dayan & Abbott, 2001). This entails finding mechanisms relat-
ing the strengthening or weakening of synapses via neurotransmitters and
(presynaptic) neurons. Many mathematical models or synaptic plasticity
rules have been proposed to explain synaptic plasticity in supervised and
unsupervised learning environments. In an unsupervised learning environ-
ment where the neuron network self-organizes, an activity is represented by
a continuous variable (input) at the presynaptic level and linked to a post-
synaptic activity variable (output) by dynamic weights. The relationship
between these variables is a differential equation describing the change of
weights over time and include and is not limited to the basic Hebbian rule
(Sejnowski & Tesauro, 1989) and its variant, the covariance rule (Dayan &
Abbott, 2001), the Bienestock-Cooper-Munro (BCM) rule (Bienenstock et al.,
1982), and the Oja rule (Oja, 1982). To avoid unbounded growth, an upper
saturation limit is often imposed, for instance in BCM and Oja rules. Alower
limit is needed to allow for inhibition. However, this lower limit is often
given by the condition that the length of weights not be zero. In population
dynamics, there are rules for which the density or size of a population is
both bounded above and below by nonnegative constants as in the Allee
effect. The Allee effect was introduced by Allee (1949) and characterizes a
phenomenon in population dynamics where there is a positive correlation
between a population density and its per capita growth rate. Allee effects
are divided into strong and weak Allee effects (Hutchings, 2015). The strong
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898 E. Kwessi

Figure 1: (a) The per capita growth rate as a function of the population den-
sity x. The red curve represents no Allee effect since there is a negative corre-
lation between the per capita growth rate and the density. The black dashed
curve represents the weak Allee effect since at lower densities x, the per capita
growth rate is increasing but there is no Allee threshold A. The blue dashed rep-
resents the strong Allee effect since there is a positive correlation between the
per capita growth rate and the existence of a threshold under with the popula-
tion decreases to extinction. This is highlighted in the cobweb diagram in panel
c where a trajectory (red arrow) starting below A converges to 0. In panel b, the
starting trajectory (red arrow) above A converge to K.

Allee effect occurs when a population has a critical density A below which
it declines to extinction and above which it increases toward its carrying
capacity K. The weak Allee effect occurs when a population lacks such a
critical density, but at lower densities, the population growth rate arises
with increasing densities (see Figure 1). Since their inception, Allee effects
have substantially been investigated and applied by researchers across the
board.

Mathematical models of the Allee effects and their dynamics have been
investigated for competing populations in Assas et al. (2015a, 2015b, 2014;
Assas, Elaydi et al., 2015); Elaydi et al. (2018). Stochastic models of the Allee
effects were discussed in Assas et al. (2016). Models addressing Allee ef-
fects and conservation are discussed in Courchamp et al. (2008). Models ad-
dressing population resilience were proposed by Dennis et al. (2015). Some
real-life evidence of Allee effects has been documented in Courchamp et al.
(2008) and Perala and Kuparinen (2017). Possible extensions of Allee effects
to medicine have been proposed in Delitala and Ferraro (2020), Fontanari
and Perlovsky (2006), Johnson et al. (2019), Konstorum et al. (2016), and
Neufeld et al. (2017).

To our knowledge, the Allee effect has not yet been been discussed in
combination with plasticity rules. In this letter, we aim to make a foray into
the topic and show that in fact, an Allee effect, when combined with the Oja
rule, can be characterized as a drift toward an absence of plasticity. More-
over, the model we propose has the following key advantages.
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1. Unbounded growth is controlled and normalization is preserved.
2. Blow-up is avoided at lower initial values.
3. Competition between weights is induced.
4. The model is general enough to account for multiple layers of pre-

and postsynaptic neurons.
5. Under specific conditions on the network parameters, stability of the

dynamical system is obtained.

The use of an Allee effect in neuroscience may have the potential to pro-
duce invaluable information that highlight hidden features in plasticity and
could potentially enrich the ever growing literature on the topic. The re-
mainder of this letter is organized as follows. In section 3, we introduce our
idea of an Allee effect postsynaptic neuron model. In section 4, we provide
a stability analysis of a single postsynaptic neuron model with and with-
out a plastic recurrent connection. Ensembles of postsynaptic neurons are
tackled in section 5.

2 Preliminaries

Consider a system with L layers and let an L × Nu matrix u =(
u(1), u(2), . . . , u(L)

)
represent the presynaptic activities in the system. For

1 ≤ � ≤ L, u(�) =
(

u(�)
1 , u(�

2 ), . . . , u(�)
Nu

)
represents presynaptic activities of Nu

inputs or neurons within the �th layer of the system. Let an L × Nv ma-
trix v = (v(1), v(2), . . . , v(L)

)
be the postsynaptic activities generated by the

presynaptic activities u, where v(�) =
(
v

(�)
1 , v

(�)
2 , . . . , v

(�)
Nv

)
represents the

postsynaptic activities of Nv neurons on the �th layer. Let W be an input
synaptic block matrix of weights representing the strengths of the synapses
from the presynaptic neurons u to the postsynaptic neurons v. We note that
W is an L × Nu × L × Nv block matrix with entries

(
W(k,�)

)
, for 1 ≤ k, � ≤ L.

Each block W(k,�) is a matrix with entries w
(k,�)
i j where 1 ≤ j ≤ Nv and 1 ≤

i ≤ Nu. To account for interconnections between postsynaptic neurons, we
consider an L × Nv × L × Nv recurrence block-matrix Z with entries Z(k,�),
for 1 ≤ k, � ≤ L, where each entry Z(k,�) is a matrix with entries z(k,�)

m j for
1 ≤ j, m ≤ Nv . We let dw = L × Nu × L × Nv and dz = L × Nv × L × Nv and
we define the length of a vector W in R

dw as ‖W‖2 = WT · W, where the dot
stands for the dot or inner product in R

dw (see Figure 2).

Remark 1. In the sequel, we will invariably use the dot product with the
following understanding:

WT · u is an L × Nv matrix with entries:

(WT · u)(k)
i =

L∑
�=1

Nu∑
j=1

w
(k,�)
i j u(�)

j , for 1 ≤ k ≤ L, 1 ≤ i ≤ Nv .
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900 E. Kwessi

Figure 2: A geometric representation of a triple-layer architecture with Nu = 10
presynaptic neurons u(�)

j and Nv = 1 postsynaptic neurons v (�)
i per layer, dw = 90

weights w(k,�)
ik , and dz = 9 recurrent connections z(k,�)

im .

ZT · v is an L × Nv matrix with entries:

(ZT · v)(k)
i =

L∑
�=1

Nv∑
m=1

z(k,�)
im v (�)

m for 1 ≤ k ≤ L, 1 ≤ i ≤ Nv .

Consequently, as sums of products of coordinates of vectors, entries for
WT · u and ZT · v are themselves dot products and therefore enjoy their
properties. Also in the sequel, matrices and vectors will be represented by
boldface symbols, whereas scalars will be represented with normal font
symbols. We start with some definitions.

Definition 1. The learning activity of a system or plasticity function of a system
is a function given as

L(W, u, v) = H(W, u, v) − ϕ(W, u, v), (2.1)

where H(W, u, v) is a function referred to as the Hebbian function and ϕ(W, u, v)
is a function referred to as the Hebbian modification function.
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A Strong Allee Effect Synaptic Plasticity Rule 901

Table 1: Known Plasticity Rules

Plasticity rule H(W, u, v) ϕ(W, u, v) τW
dW
dt Reference

Hebbian vT u 0 vT u Hebb (1949)
Covariance vT u θuvT vT (u − θu ) Dayan and Abbott (2001)

θvu (vT − θv )u
BCM vT uv θvvT u vT u(v − θv ) Bienenstock et al. (1982)
Oja vT u αvT Wv vT u − αvT Wv Oja (1982)

Definition 2. We define a synaptic plasticity rule as

τW
dW
dt

= L(W, u, v). (2.2)

The constant τW represents a timescaling constant controlling the rate of
change of W, and λW = 1

τW
represents the learning rate. The model in equa-

tion 2.2 is general enough to include many known synaptic plasticity rules
(see Table 1).

To model the dynamics of postsynaptic neurons v, we will use the firing-
rate equation given as

τv
dv
dt

= −v + T(W, Z, u, v), (2.3)

where τv represents the timescale of the firing-rate dynamics of v and
T(W, Z, u, v) is a function representing the total activity in the system. This
activity may consist of pre-and postsynaptic activities u and v, with feed-
forward and/or feedbackward connections with intensities (or weights) W,
with or without recurrent connections with intensities Z. In the general
literature, T(W, Z, u, v) is often taken as a linear function of the pre- and
postsynaptic activities u and v. That is, T(W, Z, u, v) = WT · u + ZT · v. It
could also be a nonlinear function depending on an activation function G
as T(W, Z, u, v) = G(WT · u + ZT · v) or two activation functions G1 and G2

as T(W, Z, u, v) = WT · G1(u) + ZT · G2(v). The activation function controls
the rate of signals emitted by presynaptic neurons u and the recurrence rate
of postsynaptic neurons v. It is common to use either the sigmoid function
G(x) = (1 + e−x)−1 or the Heaviside function G(x) = 0, x < 0, G(x) = 1, x >

1. We observe, however, that more general activation functions G can be
considered (Kwessi, 2021a). We note that a more complete and perhaps
more realistic model for equation 2.3 should contain a diffusion term and a
less trivial reaction term than v. For simplicity and to maintain tractability,
we will will not do so in this letter.
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902 E. Kwessi

Remark 2. It is important to note that here, the total activity, T(W, Z, u, v)
would be zero if the the pre- and and postsynaptic activities u and v are can-
celing each other. This is obviously the case if u = 0 and v = 0. From equa-
tion 2.3, above, if T(W, Z, u, v) = 0, then v(t) = v0e−λvt and thus approaches
0 over time. Combining the latter with equation 2.2, it follows that, for some
constant presynaptic inputs u and for some generic constant matrix � that

• W(t) = λW
λv

[
e−λvtvT

0 u + �
]

for the basic Hebb rule.
• W(t) = λW

λv

[
e−λvtvT

0 (u − θv) + �
]

or W(t) = λW
λv

[
e−λvtvT

0 (θu − u) + �
]

for the covariance rule.
• W(t) = λW

λv

[(
e−λvt

2 vT
0 − θv

)
e−λvtvT

0 u + �
]

for the BCM rule.

• W(t) = evT
0 v0

α
2λv

e−2λvt
[
vT

0 u
∫

e−λvt−vT
0 v0

α
2λv

e−2λvt
dt + �

]
for the Oja rule.

We can therefore infer that when T(W, Z, u, v) = 0, v approaches 0 over
time whereas W approaches a constant �. We will restrict ourselves to the
case where T(W, Z, u, v) = WT · u + ZT · v = 0 and v = 0 if the presynaptic
activities vector u is zero.
Remark 3. We also observe that T(W, Z, u, v) = WT · u + ZT · v can be
understood as the total potential energy in the system. Indeed, suppose
W, Z, u, and v are vector fields over an open connected domain D . Let P
be a path in D . If these fields are continuous over D and

∫
P WT · du and∫

P u · dWT are path independent, then the fields W and u are conserva-
tive. Consequently, there exist functions f1 and f2 such that WT = ∇ f1 and
u = ∇ f2. Therefore, the potential energy due to the fields WT and u is

∫
P
∇ f1 · du +

∫
P
∇ f2 · dW = WT · u.

Similarly, there exist functions g1 and g2 such that the potential energy due
to the fields Z and v is∫

P
∇g1 · dv +

∫
P
∇g2 · dZT = ZT · v.

From equation 2.3, we can deduce that the steady state is attained when
the postsynaptic activity is equal to the total potential energy in the system.
This also suggests that postsynaptic activity increases if it is less than the
system’s potential energy and decreases otherwise.

3 Allee Effect Postsynaptic Neuron Model and Motivation

Suppose that we have only one layer (L = 1) and a single postsynap-
tic neuron (Nv = 1). Therefore, v = v will be a scalar. Let us assume fur-
ther that there is no recurrent connection (Z = 0) and let T(W, 0, u, v) :=
T(W, u, v ) = WT · u. Per remark 3, WT · u will be a scalar. Moreover, W is a

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/5/896/2079371/neco_a_01577.pdf by R
am

ona M
archand on 03 M

ay 2023



A Strong Allee Effect Synaptic Plasticity Rule 903

1 × Nu vector; thus, WT · W = ‖W‖2 is a positive scalar. With the Hebbian
rule and for v = WT · u, if we take the dot product on both sides of equation
2.2 by 2WT , we will have

2τWWT · dW
dt

= τW
d ‖W‖2

dt
= 2v2.

This shows that the Hebbian rule is dynamically unstable since synaptic
weights will become unbounded over time. The same conclusion will be
reached with the covariance rule. With the BCM rule, we have

τW
d ‖W‖2

dt
= 2v2(v − θv ).

This means that unbounded growth can be avoided by allowing θv to grow
more rapidly than v at any instant. This is a rather stringent condition.
Synaptic normalization amounts to imposing a global constraint to pre-
vent unbounded growth. This is achieved with the Oja rule. Indeed, we will
have

τW
d ‖W‖2

dt
= 2v2(1 − α ‖W‖2).

This shows that the growth rate of length of weights will be bounded over
time by 1

α
. For constants A ≥ 0 and K > 0, consider the following plasticity

rule:

τW
dW
dt

= v
(

u − v

K
W
)(

1 − A

‖W‖2

)
. (3.1)

We note also that when A = 0, equation 3.1 becomes the Oja rule with α = 1
K .

Now multiplying both sides of this equation by 2 ‖W‖T , we obtain

d ‖W‖2

dt
= 2v2

(
1 − ‖W‖2

K

)(
1 − A

‖W‖2

)
. (3.2)

In this case, the growth rate of length of weights is bounded above by
max(A, K). Moreover, the threshold min(A, K) induces a strong Allee ef-
fect; that is, below this threshold, growth decreases to zero and above it
increases. Another way of saying this is that this threshold induces a pos-
itive correlation between per capita growth rate 1

‖W‖2
d‖W‖2

dt and ‖W‖2 (see,
for instance, Figure 3). We will therefore refer to such rules as the strong
Allee effect plasticity rules.
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904 E. Kwessi

Figure 3: (a) The per capita growth rate of the length of weights is represented
in the linear case for the Oja rule (A = 0) and the strong Allee effect rule (A = 1
and K = 5). For A > 0, we observe a local positive correlation between the per
capita growth rate and the density ‖W‖2 when ‖W‖2 < A and a local negative
correlation ‖W‖2 > A. In the Oja rule, the correlation is always negative, which
means that there is no Allee effect. (b) The growth rate is represented. In the
Oja rule, the bounded growth rate is required at lower lengths ‖W‖2 to avoid
blowup, which is not the case for the Allee rule.

In population dynamics in general, the term
(
1 − A ‖W‖−2) is used to

account for the presence of sparse populations or mate limitation and en-
ters the model multiplicatively. Adding this term as in equation 3.1 in-
duces synaptic normalization in that when the weights are nonnegative,
their growth is limited by the global threshold max(A, K). Moreover, con-
vergence of ‖W‖2 to max(A, K) induces competition between weights and
preserves dynamic stability. A weak Allee effect may be introduced addi-
tively with a Holling’s type II functional response term of the form − m

‖W‖2+a
,

where a is referred to as an Allee constant and m is a mortality rate (see, for
instance, Cai et al., 2012). However, the resulting plasticity rule blows up at
lower values of W (0). Another important observation is that with the strong
Allee rule, the concept of strong or soft bounds can be considered; relative
growth rate is used rather than growth as, for instance, in van Rossum and
Barret (2012). In the sequel, we consider a strong Allee effect rule in more
general settings.

Definition 3. An Allee effect rule is a synaptic plasticity rule for which the relative
growth rate (of the length of weights) has a positive correlation with the length of
weights.
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A Strong Allee Effect Synaptic Plasticity Rule 905

Therefore, a strong Allee effect rule is a plasticity rule that has a threshold under
which the length of weights decreases to zero and above which it increases to a
dynamically stable point.

Definition 4. Let W, Z, u, and v be given as above. Consider an activity func-
tion T(W, Z, u, v). We define an Allee plasticity rule with nonplastic recurrent
connections as the system of differential equations,

⎧⎪⎪⎨
⎪⎪⎩

τW
dW
dt

= vT
(
u − K−1Wv

) (
1 − A(WTW)−1

)
τv

dv
dt

= −v + T(W, Z, u, v)

. (3.3)

Definition 5. We define an Allee plasticity rule with plastic recurrent connections
as the system of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τW
dW
dt

= vT
(
u − K−1Wv

) (
1 − A(WTW)−1

)
τv

dv
dt

= −v + T(W, Z, u, v)

τZ
dZ
dt

= R(W, Z, u, v)

. (3.4)

where R(W, Z, u, v) is the total recurrent (postsynaptic) activity and τZ is a scaling
constant.

In the literature, two rules are often considered for R(W, Z, u, v). (See,
for instance, Dayan and Abbott, 2001):

• Anti-Hebbian rule: R(W, Z, u, v) = −vTv + βZ, for some constant β.
• Goodall rule: R(W, Z, u, v) = I − (WT · u)v − Z. This rule is often

used because it produces decorrelated postsynaptic outputs and pos-
sesses homoskedasticity properties.

In the next sections, we provide a stability analysis of these plasticity rules.

4 Stability Analysis of a Single Postsynaptic Neuron Model

Here, we let L = 1 and Nv = 1. In the presence of a single postsynaptic neu-
ron, the matrix v is reduced to a constant v , and the recurrent connection
matrix Z is reduced to a single constant z. There are two cases to consider.
First, there could be no recurrent connection between v and itself (z = 0)
(see Figure 4a). Second, there could be a recurrent connection with weight
z �= 0 (see Figure 4b).
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906 E. Kwessi

Figure 4: (a) One postsynaptic neuron with no recurrent connection. (b) One
postsynaptic neuron with one recurrent connection.

4.1 Single Postsynaptic Neuron with No Recurrent Connection. In
this case, we will have Z = 0 and v = v . Consider the Allee-type system
given by

⎧⎪⎪⎨
⎪⎪⎩

τW
d ‖W‖2

dt
= 2v

(
T1(W, u) − v

K
‖W‖2

)(
1 − A

‖W‖2

)

τv
dv

dt
= −v + T2(W, u)

. (4.1)

We will use the notation x =: ‖W‖2 , y := v, u = ‖u‖ cos(θ ), where θ is the
angle between the vector W and u. Since WT · u = ‖W‖ ‖u‖ cos(θ ), in the
linear case, we will have T1(W, u) = T2(W, u) = WT · u = u

√
x. In this case

for x > 0, we would have the system

⎧⎪⎪⎨
⎪⎪⎩

τx
dx
dt

= g1(x, y) := 2y
(
u
√

x − yx
K

) (
1 − A

x

)
τy

dy
dt

= g2(x, y) := −y + u
√

x

. (4.2)

The x-isocline is given by the equations y = 0, uK
√

x = yx, and x = A and
the y-isocline is given by y = u

√
x. The steady states of this system are

(x, 0), (K, u
√

K), and (A, u
√

A). We now discuss their stability.
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A Strong Allee Effect Synaptic Plasticity Rule 907

Figure 5: Time series and phase space diagram when A = 1.5 and K = 3. The
point (A, u

√
A) is unstable, and (K, u

√
K) is stable.

Figure 6: Time series and phase space diagram when A = 3 and K = 1.5. The
point (A, u

√
A) is stable, and (K, u

√
K) is unstable.

Theorem 1. In the system (see equation 4.2):

(i) For fixed x > 0, the equilibrium point (x, 0), is an attractor.
(ii) If K < A, then (A, u

√
A) is asymptotically stable and (K, u

√
K) is unstable.

(iii) If A < K, then (A, u
√

A) is unstable and (K, u
√

K) is asymptotically stable.
(iv) If K = A, then (K, u

√
K) is an attractive line of equilibria.

Remark 4.

(a) We note that the classification of a steady state is independent of the
sign of u because 
, tr(J), and det(J) all depend on u2.

(b) We note, however, that T2(W, u) needs not be a linear function of
W and u. Dynamically, their behaviors are similar, especially when
T2(W, u) = WT · G(u) for some nonlinear function G.

In Figures 5 to 9, we illustrate the above results by plotting the time series of
xt and yt , for t = 0, . . . , 250. We let A and K take interchangeably the values
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908 E. Kwessi

Figure 7: Time series and phase space diagram when A = K = 3. The point
(A, u

√
A) = (K, u

√
K) is a saddle.

Figure 8: Time series and phase space diagram when A = 1.5, K = 3, and u = 0.
In this case, every point (x, 0) is an attractor.

Figure 9: Time series and phase space diagram when A = 0 and K = 3. This is
the Oja rule, and the point (K, u

√
K) is stable.
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A Strong Allee Effect Synaptic Plasticity Rule 909

1.5 and 3 in Figures 5, 6, and 8. The starting points of the trajectories are
(0.1,−2), (0.2,−0.9) in black, (0.3, 1.1), (0.4, 1.5) in cyan, (4.8, 1), (5, 2) in
brown, and (9.8,−2), (4.5,−2) in magenta. In Figures 5, 6, 7, and 9, we
take without loss of generality u = 0.3. The solid blue curve represents
the x-isocline given as y = uK√

x . The solid blue line represents the x-isocline
y = 0, and the solid red curve represents the y-isocline given as y = u

√
x.

The dots are the intersection between the x- and y-isoclines. In particular,
the gray dot represents the origin (0, 0), and the yellow dot has coordi-
nates (A, u

√
A), and is the intersection between the x-isocline x = A and the

y-isocline y = u
√

x. Likewise, the green dot is the intersection between the
x-isocline x = K and the y-isocline y = u

√
x with coordinates (K, u

√
K).

From these figures, we confirm the results above in that (A, u
√

A) and
(K, u

√
K) are either attractors or saddle points. Figure 8 confirms that when

u = 0, the line y = 0 is a sink.

4.2 Discussion. In the case of one neuron with nonplastic recurrent con-
nection, establishing stability of the steady states is relatively manageable
compared to the case of a plastic connection. Figure 5 is similar to a typi-
cal case in ecology where the Allee threshold A is less than K. We clearly
see that in the region below A, trajectories of synaptic weights converge to
zero, while trajectories of postsynaptic neurons may be in either excitatory
or inhibitory states. Interestingly, excitatory postsynaptic neurons never be-
come inhibitory since they never cross the red curve. In that same region,
inhibitory neurons become excitatory over time but with decreasing synap-
tic weights. Figure 6 shows that if A > K, the Allee effect is no more guar-
anteed to occur below A or even below K. In fact, some neurons, whether in
excitatory or inhibitory states, would have decaying or increasing synaptic
weights. This is the case for the trajectories in black and cyan. Figure 7 is the
case when A = K and there is an Allee effect. Figure 8 is an illustration of
the situation where at some point in time, there is no presynaptic activity.
Since postsynapatic is already in excitatory or inhibitory modes, they will
decay to zero rather quickly. Figure 9 is essentially the Oja rule, and there
is no Allee effect.

4.3 Single Postsynaptic Neuron with One Constant Recurrent Con-
nection. In this case, Z = z and v = v are constant with dZ

dt = 0. As we ob-
serve above, we consider the system given by⎧⎪⎨

⎪⎩
τW

d‖W‖2

dt = 2v
(
WT · u − v

K ‖W‖2) (1 − A
‖W‖2

)
τv

dv

dt
= −v + T2(W, u, z, v )

. (4.3)

Using the notation x =: ‖W‖2 , y := v, u = ‖u‖ cos(θ ), and given functions
f1(x, u) and f2(x, y, u, v ), this system is of the form
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910 E. Kwessi

⎧⎪⎪⎨
⎪⎪⎩

τx
dx
dt

= g1(x, y) := 2y
(

f1(x, u) − yx
K

) (
1 − A

x

)
τy

dy
dt

= g2(x, y) := −y + f2(x, y, u, z)

. (4.4)

This system has similar dynamics to that of system 4.2. In the linear case
where f2(x, y, u, z) = u

√
x + zy, dy

dt = (z − 1)y + u
√

x = 0 if (1 − z)y = u
√

x.
For z = 0, this is the parabola (red solid curve) obtained in the previous
case. When z approaches 1, this parabola becomes increasingly “steeped”
and eventually explodes into the y-axis when z = 1. In the latter case, there
is no steady state in the system since they are always given as intersections
between the parabola and the vertical lines x = A and x = (1 − z)K. In real-
ity, there will be infinitely many points of intersection between the parabola
and the vertical lines.

4.4 Single Postsynaptic Neuron with One Plastic Recurrent Connec-
tion. For a single postsynaptic neuron with one plastic recurrent connec-
tion, we will have Z = z and v = v . In this letter, we use Goodall’s rule for
its decorrelation properties. For a single neuron, we consider the system
given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τW
d‖W‖2

dt = 2v
(
WT · u − v

K ‖W‖2) (1 − A
‖W‖2

)

τv
dv

dt
= −v + T2(W, u, z, v )

τz
dz
dt

= −(WT · u)v + 1 − z

. (4.5)

We now discuss the steady states of the system above (see Figure 10).
Case 1: v = 0. Then we would have T2(W, u, z, v ) = 0, which, as above,

can only happen if u = 0 and v = 0. In this case, the third equation suggests
that we must have z = 1. Thus, in the space formed by x = ‖W‖2 , y = v ,
and z, the line parallel to the x-axis with equation y = 0, z = 1 is a steady
state.

Case 2: v �= 0, WT · u = v
K ‖W‖2. This condition is equivalent to v =

K(WT ·u)
‖W‖2 . From the second equation in equation 4.5, we have v = WT · u + zv ;

therefore, we deduce that z = 1 − ‖W‖2

K . Using the third equation −(WT ·
u)v + 1 − z = 0, it follows that z = 1 − ‖W‖2

K v2. Since the values of z must
be the same, it follows that we should have v2 = 1. The latter entails hav-
ing ‖W‖2 = K

∣∣WT · u
∣∣ and z = 1 − ∣∣WT · u

∣∣. We conclude that there are two
steady states in the space formed by x = ‖W‖2 , y = v , and z, namely, the
lines
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A Strong Allee Effect Synaptic Plasticity Rule 911

Figure 10: Steady states (in red) of system 4.5, when A > K.

L1 : z = 1 − x
K

, y = 1,

L2 : z = 1 − x
K

, y = −1.

Case 3: v �= 0, ‖W‖2 = A. In this case, v = WT · u + zv and thus v = WT ·u
1−z .

We note from above that if v �= 0, then z �= 1. It follows from the third equa-
tion of the system 4.5 that z = 1 − (WT · u)v , and therefore we can deduce
that (1 − z)(1 − v2) = 0. Since z �= 1, we must have v2 = 1. The latter implies
that

∣∣WT · u
∣∣ = |1 − z|. Thus, z = 1 ± WT · u. We conclude that there are two

steady states in the space formed by x = ‖W‖2 , y = v , and z, namely, the
points

B1 = (A,−1, 1 + u
√

A), B2 = (A, 1, 1 − u
√

A).

Using the notation x =: ‖W‖2 , y := v, u = ‖u‖ cos(θ ), and for given func-
tions f1(x, u) and f2(x, y, z, u), system 4.5 is of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τx
dx
dt

= g1(x, y, z) := 2y
(

f1(x, u) − yx
K

) (
1 − A

x

)
τy

dy
dt

= g2(x, y, z) := −y + f2(x, y, z, u)

τz
dz
dt

= g3(x, y, z) := f3(x, y, u) + 1 − z

. (4.6)

Our first result in this section concerns the stability of the steady state line
x > 0, y = 0, z = 1 and the points B1 and B2.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/5/896/2079371/neco_a_01577.pdf by R
am

ona M
archand on 03 M

ay 2023



912 E. Kwessi

Theorem 2. Consider the system 4.6, where f1(x, u) = u
√

x, f2(x, y, z, u) =
u
√

x + zy, and f3(x, y, u) = −uy
√

x.

(i) If u = 0, then the steady state is the line (x, 0, 1) for x > 0 and it is always
stable.

(ii) Suppose u > 0.
(a) If u < 2

√
A

K , then B1 is unstable and B2 is stable.

(b) If u > 2
√

A
K , then B1 and B2 are unstable.

(iii) Suppose u < 0.
(a) If −2

√
A max {2A, K} ≤ u, then B1 and B2 are stable.

(b) If u < −2
√

A max {2A, K}, then B1 and B2 are unstable.
(c) If −2

√
A min {2A, K} < u < −2

√
A max {2A, K}, one of B1 or B2 is

unstable and the other is stable.

The proof is in the appendix. Our second result discusses the stability of
the steady states L1 and L2.

Theorem 3. Consider the system 4.6, where f1(x, u) = u
√

x, f2(x, y, z, u) =
u
√

x + zy, and f3(x, y, u) = −uy
√

x. Put

α1 = 2
(

u
2
√

x
− 1

K

)(
1 − 1

A

)
+ 2

(
u
√

x − 2x
K

)(
A
x2

)
,

α2 =
(

2u
√

x − 4x
K

)(
1 − A

x

)
, α3 = 0,

β1 = u
2
√

x
, β2 = − x

K
, β3 = −1,

γ1 = u
2
√

x
, γ2 = −u

√
x, γ3 = −1.

In addition, we let

a2 = (α1 + β2 − 1),

a1 = α1(1 − β2) + β2 − γ2 + α2β1,

a0 = α1(γ2 − β2).

(i) Suppose a0 = 0.
(a) If a2

2 + 4a1 < 0 and a2 < 0, then L1 and L2 are stable.
(b) Suppose a2

2 + 4a1 > 0.
1. If a1 > 0 and a2 > 0, then L1 and L2 are unstable.
2. If a1 < 0 and a2 > 0, then L1 and L2 are stable.
3. If a1 > 0 and a2 < 0 or a1 < 0 and a2 > 0, then L1 and L2 are

unstable.
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A Strong Allee Effect Synaptic Plasticity Rule 913

Figure 11: Illustration of the dynamics of the system above for u = 2, K = 1,
and A = 4. u < 2

√
A

K , and we observe that B2 is stable and B1 is unstable. The
cubes R1 = [0, 4] × [0, 10] × [−5, 0] and R2 = [0, 4] × [−20, 0] × [−5, 10] are the
Allee regions. Starting trajectories will eventually converge to 0 in x, leading to
absence of plasticity.

(iii) If a0 > 0, a1, a2, and a1a2 > a1, then L1 and L2 are stable, otherwise, they
are unstable.

The proof is in the appendix.

4.5 Illustration. Since they are many cases to consider, we only illus-
trate a couple of them for simplicity. In Figures 11 to 13, we show the dy-
namics of system 4.5. We choose M = 20 different trajectories with length
N = 5000. The initial states are chosen randomly. Since x = ‖W‖2 must be
positive, we randomly select M starting points x0 in the interval (0, 5).
The starting values y0 are chosen randomly as M/2 = 10 in the interval
(−5, 0) and M/2 = 10 in (0, 5). The starting values z0 are chosen randomly as
M/2 = 10 in the interval (−10, 0) and M/2 = 10 in (0, 10). The starting points
(x0, y0, z0) are the white dots in the figures that follow. The green sphere is
B1 and the blue sphere is B2.
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914 E. Kwessi

Figure 12: Illustration of the dynamics of the system above for u = 1.1, K = 3,
and A = 2. u > 2

√
A

K , and we observe that B1 and B2 are unstable. In fact, B1 is
clearly a repeller point, whereas B1 is a saddle point. This case is less realistic
since synaptic normalization is never achieved. In fact, the lengths of weights
x increase without bound, while the postsynaptic activities y, though different
at early times, become increasingly similar over time (straight line). The Allee
regions are the cubes R1 = [0, 2] × [0, 10] × [−5, 0] and R2 = [0, 2] × [−40, 0] ×
[−5, 10]. We observe that the gray trajectory starting just above R1 does not
converge to zero because it gets into the basin of attraction of L2 and increases
thereafter.

4.6 Discussion. The first simulation shows that the trajectories of the
lengths of weights x decrease to either A = 4 or 0. The second simulation is
more nuanced in that some trajectories decrease to A = 2 first. Then, after
a while, they either decrease to 0 or increase. Other trajectories will first
increase and then decrease to 0. Finally, some will increase without bound
after initially decreasing to close to A = 2. What these simulations show
is that the size of the Allee region (region where the Allee effect occurs)
depends on the value of A. Clearly, if A = 0, there is no Allee region and the
model is reduced to the Oja rule. An important observation is that the fixed
points B1 and B2 both depend on A. The first simulation shows that if A = 0
(Oja rule), then weight lengths x all decrease to 0, without any possibility
of recovering. This means that our system, while stable in the long term,
represents a drift toward an absence of plasticity. In a sense, the parameter
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A Strong Allee Effect Synaptic Plasticity Rule 915

Figure 13: Illustration of the dynamics of the system above for u = −4, K = 4,
and A = 4. u > −2

√
A max{2A, K}, and we observe that B1 and B2 are unstable.

This case is less realistic since synaptic normalization is not achieved all the
time. Moreover, postsynaptic activities y and recurrent connections z increase
without any bound. If we look closely at B1 and B2, we clearly see that no tra-
jectory converges to B1 and B2. The Allee region is cube R1 = [0, 4] × [0, 50] ×
[−10, 20].

A must be positive if we want to have more than a drift toward the absence
of plasticity for all trajectories.

From above, we clearly see that there is an advantage to studying the
length of weights rather than individual weights. The complexity of the
dynamics is vastly reduced. This approach makes studying large numbers
of layers mathematically possible while maintaining interpretability of the
results. The main drawback, as illustrated by the results above (see theo-
rems 2 and 3) is that stability analysis, while feasible, still depends unfortu-
nately on complicated quantities.

5 Model of Multiple Postsynaptic Neurons

In the single postsynaptic neuron model, we did not include recurrent con-
nections. For a multiple postsynaptic model, we have to consider recurrent
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916 E. Kwessi

connections that themselves may be fixed or plastic. Another important as-
pect to consider is that of a layered system where pre- and postsynaptic
neurons are on different layers. It is entirely possible that this aspect may
help reduce redundancies and correlations among output units.

5.1 Multiple Output Units with Constant Recurrent Connections. In
this case, Z and v are nonzero matrices with Z constant over time. We fix
1 ≤ � ≤ L and 1 ≤ j ≤ Nv . The assumption here is still that we have Nu

presynaptic neurons and Nv postsynaptic neurons per layer. Now we let
W(�)

j be 1 × Nu vector of synaptic weights from the Nu presynaptic neurons

u(�) on the �th layer to the jth postsynaptic neurons v
(�)
j on the �th layer. In

this case, equation 4.3 becomes⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τW(�)
j

d
∥∥∥W(�)

j

∥∥∥2

dt
= 2v

(�)
j

⎛
⎝[W(�)

j ]T · u(�) −
v

(�)
j

K(�)
j

∥∥∥W(�)
j

∥∥∥2

⎞
⎠
⎛
⎜⎝1 −

A(�)
j∥∥∥W(�)
j

∥∥∥2

⎞
⎟⎠

τ
v

(�)
j

dv
(�)
j

dt
= −v

(�)
j + T

(
W(�)

j , u(�), z(�)
j , v

(�)
j

) .

(5.1)

We see that for these given � and j, system 5.1 has similar dynamics as sys-
tem is 4.3. However, there are other considerations to account for in this
case. The system’s parameters all depend on � and j. The assumptions that
timescale constants τW(�)

j
are the same is not completely unrealistic, espe-

cially if the system evolves in a homogeneous ambient space. The same can
be said of timescale constants τ

v
(�)
j

. The thresholds A(�) and K(�) can be the

same or can vary, selected according to a chosen distribution. In the con-
stant case, the dynamics of system 5.1 is identical across all layers; thus, the
postsynaptic neurons will be perfectly correlated. In the case where these
thresholds are not identical, of interest is understanding how and if the
threshold vectors A(�) = (A(�)

j ) and K(�) = (K(�)
j ) for 1 ≤ j ≤ Nv , 1 ≤ � ≤ L af-

fect the correlation between postsynaptic neurons v(�) per layer.
To illustrate the potential effect of thresholds, we select Nv = 150 sam-

ples of K from a truncated normal distribution N(μ = 0, σ 2 = 100) over an
interval [1.5, 30]. Likewise, we will select Nv samples A from an exponen-
tial distribution exp(θ = 0.5). These distributions are different enough to
discriminate the potential effect of thresholds A and K. The lengths of the
synaptic weights x = ‖W‖2 will be initialized uniformly over the interval
(0, 5). We fix the presynaptic length u = 0.3 and let z(�)

j = 0.4. The postsynap-
tic values v will be initialized uniformly within the interval [−2, 2]. We will
observe the Nv trajectories of v from t = 0 to t = 25 because not all of them
will converge. In fact, for given Nv postsynaptic neurons, only an N∗

v ≤ Nv
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A Strong Allee Effect Synaptic Plasticity Rule 917

Figure 14: (a) Heat map showing the correlation between the N∗
v = 80 conver-

gent trajectories. (b) Box plots showing the evolution of the distribution of tra-
jectories form time t = 1 to t = 25.

will converge. We will therefore assess the correlation between these N∗
v tra-

jectories. In Figure 14a, the heat map shows that the majority of the N∗
v = 80

postsynaptic neurons v are highly correlated. Some of them, albeit a small
number, are decorrelated. It could be due to the randomness in the choice
of the parameters above, or it could be due to the fact that the model it-
self reduces correlation, without any formal decorrelation mechanism like
Goodall’s. The box plots in Figure 14b show the evolution of the N∗

v trajec-
tories over time. While the distribution of the N∗

v = 80 trajectories differs
significantly initially, they become increasingly similar over time, despite
a few outliers. It also shows that the variance of outputs is constant over
time.

To ascertain whether the number of decorrelated postsynaptic neuron v
is independent of the number Nv chosen, we introduce the decorrelation
percentage. There are

(N∗
v

2

)
Spearman correlation coefficients. The decor-

relation percentage is the proportion of these coefficients less than 0.2
(considered a weak correlation in the literature). Figure 15 shows that the
decorrelation percentage is high when Nv is low and decreases with increas-
ing Nv .

5.2 Multiple Output Units with Plastic Recurrent Connections. In this
case, Z and v are matrices where Z is time dependent. As in section 5.1,
we fix 1 ≤ k, � ≤ L and 1 ≤ j, m ≤ Nv . Let z(k,�)

m j represent the plastic weight

connecting the jth postsynaptic neuron v
(�)
j on the �th layer with the mth

postsynaptic neuron v
(k)
m on the kth layer. System becomes
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918 E. Kwessi

Figure 15: Decorrelation percentage for the Oja model (red) and the Allee
model (blue), both as functions of the number of postsynaptic neurons per lay-
ers Nv .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τW(�)
j

d
∥∥∥W(�)

j

∥∥∥2

dt
= 2v

(�)
j

⎛
⎝[W(�)

j ]T · u(�) −
v

(�)
j

K(�)
j

∥∥∥W(�)
j

∥∥∥2

⎞
⎠
⎛
⎜⎝1 −

A(�)
j∥∥∥W(�)
j

∥∥∥2

⎞
⎟⎠

τ
v

(�)
j

dv
(�)
j

dt
= −v

(�)
j + T

(
W(�)

j , u(�), z(k,�)
m j , v

(�)
j

)

τz(k,�)
m j

dz(k,�)
m j

dt
= −

(
[W(�)

j ]T · u(�)
)

v
(�)
j + 1 − z(k,�)

m j

.

(5.2)

As above, we may assume that the ambient space is homogeneous so that
timescale constants τz(k,�)

m j
are the same. To obtain Figure 16, we used the same

parameters as in section 5, with the addition of plastic recurrent connec-
tions. The heat map in Figure 16a, shows that the N∗

v = 107 postsynaptic
neurons are less correlated than in the previous case above based on the
prevalence of light red and light blue. Figure 16b shows that the distribution
of the trajectories stabilizes relatively quickly compared to the case above
(see Figure 17).

5.3 Discussion. From the simulations above, we can draw a few
observations:
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A Strong Allee Effect Synaptic Plasticity Rule 919

Figure 16: (a) Heat map showing correlation between the N∗
v = 107 convergent

trajectories. (b) Box plots showing the evolution of the distribution of trajectories
from time t = 1 to t = 25.

Figure 17: Decorrelation percentage for the Oja model (red) and the Allee
model (blue), both as functions of the number of postsynaptic neurons per lay-
ers Nv .

1. The presence of the Allee effect term (1 − A ‖W‖−2) in the model
overall increases decorrelation, relatively speaking (see Figure 15).
Decorrelation is even increased when coupled with a decorrelation
mechanism such as Goodall’s method.
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2. We selected thresholds A and K randomly from noisy distributions
so that any measured effects would be independent of their selection.
Another important observation is that the initialization of v and Z
does not seems to produce similar results as seen above, even when
choosing from heavy-tailed distributions like N(0, 10) or a Student-t
with low degrees of freedom.

3. Systems 5.1 and 5.2 are discussed in the context where the timescales
are identical per layer. However, if they are chosen to be different and
large, then the output units become highly correlated, within layers,
reversing the decorrelation gains an Allee term would bring.

4. It seems as though the model, as written in equations 5.1 and 5.2,
may be local to a single chosen layer. However, it is hardly the case
given that one can consider that each layer has a single postsynaptic
neuron, similar to discrete dynamics of dynamic neural fields (see
Kwessi, 2021b).

6 Conclusion

In this letter, we have proposed a definition of the Allee effect in neu-
roplasticity that maintains the spirit of the Allee effect as originally pro-
posed by Allee (1949). We have also proposed a learning rule that is more
general than the Oja learning rule while preserving multiplication normal-
ization, controlling for unbounded growth, and inducing competition be-
tween weights. The model in its matrix form has the advantage that it can
accommodate single or multiple pre- and postsynaptic neurons, with and
and without recurrent connections. Stability analysis was discussed with
simulations to illustrate results. Absence of plasticity in the brain can be
due to many factors and can be observed in many brain pathologies such
as Alzheimer’s, Parkinson’s, and Huntington’s diseases and stroke. Using
the firing-rate equation to model postsynaptic activities could be a limit-
ing factor in the model in that diffusion is not accounted for. A further
improvement involving a diffusion term or a lattice differential equation
would probably add more nuance and could be worthwhile. In ecology,
remedies to an Allee effect such as immigration have been proposed in
Assas et al. (2015b), together with mathematical models explaining the
process. This amounts in practice to adding either new offsprings from
different population patches or to controlling predation. In the brain, how-
ever, it is not clear how one would go about this. Often neuroscientists
focus on reactivating lost or dormant neurotransmitters by using new tech-
nologies such as brain implants. While applications of these implants have
been numerous, mathematical models have lagged or, at best, have been
an adaptation or a reduction of the Hogkin-Huxley model (Drapaca, 2018).
The model we proposed is different and is sensitive to external inputs (as in
an Allee-type model) and thus could be used to model the effects of brain
implants. From a dynamical systems point of view, the model we propose is
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A Strong Allee Effect Synaptic Plasticity Rule 921

complex enough to accommodate a complex structure like the brain. Simu-
lations do show that there are enough parameters in the model to capture a
variety of phenomena related to neuroplasticity. From a mathematical point
of view, studying the length of weights (rather than individual weights)
coupled with other numerical quantities such as postsynaptic signals and
their strengths reduces the complexity of the problem while maintaining in-
terpretability of the results. From a purely scientific point of view, the model
offers to merge some notions discussed in ecology and neuroscience, and
it shows that these seemingly isolated areas from each other actually have
some similarities.

Appendix A: Stability Analysis of System 4.2

The partial derivatives of g1 and g2 in system 4.2 are:

∂g1(x, y)
∂x

= 2y
(

u
2
√

x
− y

K

)(
1 − A

x

)
+ 2y

(
u
√

x − yx
K

)(A
x2

)
,

∂g1(x, y)
∂y

=
(

2u
√

x − 4
yx
K

)(
1 − A

x

)
,

∂g2(x, y)
∂x

= u
2
√

x
,

∂g2(x, y)
∂y

= −1.

A.1 Stability Analysis of Steady States (x, 0). Since, per remark 2, y = 0
if and only if u = 0, the Jacobian matrix J(x, 0) at (x, 0) of the system is given
as

J(x, 0) =
(

0 0

0 −1

)
.

The eigenvalues are therefore λ1 = 0 and λ2 = −1. The trajectories in the
eigenspace of λ1 = 0 are time independent, so this eigenspace is a line of
equilibria, whereas the trajectories decay to 0 along the eigenspace of λ2 < 0.
So the point (x, 0) is stable but not asymptotically stable.

A.2 Stability Analysis of Steady States (A, u
√

A). The Jacobian matrix
J(A, u

√
A) of the system at (A, u

√
A) is given as

J(A, u
√

A) =
⎛
⎝ 2u2

(
1 − A

K

)
0

u

2
√

A
−1

⎞
⎠ .
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The matrix J(A, u
√

A) is a lower triangular matrix, and the eigenvalues are
λ1 = 2u2

(
1 − A

K

)
and λ1 = −1. Thus, if K < A, then λ1 < 0 and λ2 < 0, so the

point (A, u
√

A) is (asymptotically) stable. If K > A, then λ1 > 0 and λ2 < 0,
so the point (A, u

√
A) is unstable. Finally, if A = K, then λ1 = 0 and λ2 < 0,

and then (A, u
√

A) has a line of equilibria.

A.3 Stability Analysis of Steady States (K, u
√

K). The Jacobian matrix
J(K, u

√
K) of the system at (K, u

√
K) is given as

J(K, u
√

K) =

⎛
⎜⎜⎝

−u2
(
1 − A

K

) −2u
√

K
(

1 − A
K

)
u

2
√

K
−1

⎞
⎟⎟⎠ .

The trace tr(J) of this matrix is

tr(J) := −
[

1 + u2
(

1 − A
K

)]
.

Its determinant det(J) is

det(J) := 2u2
(

1 − A
K

)
.

Also, let


 = tr(J)2 − 4 det(J) =
[

1 − 2u2
(

1 − A
K

)]2

− 2u2
(

1 − A
K

)
.

The eigenvalues of J(K, u
√

K) are

λ1 = 1
2

[
tr(J) −

√


]
,

λ2 = 1
2

[
tr(J) +

√


]

:

• Suppose K = A. Then det(J) = 0, tr(J) = −1, and 
 = 1 > 0. It follows
that λ1 = λ2 = −1. Therefore, (K, u

√
K) is asymptotically stable.

• Suppose K < A. In this case we will have det(J) < 0 and thus 
 > 0.
Since 
 >

∣∣tr(J)
∣∣, we will have that λ2 > 0. Therefore, (K, u

√
K) is

unstable.
• Suppose K > A. Then det(J) > 0 and tr(J) < 0. If 
 > 0, we know

that the eigenvalues are real and λ1 < 0. Moreover, we have that
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 <
∣∣tr(J)

∣∣ = −tr(J). Therefore, λ2 < 0. Hence (K, u
√

K) is asymptot-
ically stable. If 
 < 0, then the eigenvalues are complex conjugates.
Since their real part is tr(J) < 0, we conclude that (K, u

√
K) is asymp-

totically stable.

Appendix B: Stability Analysis of System 4.6

B.1 Appendix B1. The steady states are obtained when we are on the
x−, y-, and z-isoclines. As above, on the x-isocline, we have either y = 0, or
f1(x, u) − yx

K = 0, or A = ‖W‖2. On the y-isocline, we will have y =
f2(x, y, z, u), and on the z-isocline, we will have z = 1 − f3(x, y, u). Now we
let the Jacobian matrix at a point (x, y, z) be

J := J(x, y, z) =

⎛
⎜⎝

α1 α2 α3

β2 β2 β3

γ1 γ2 γ3

⎞
⎟⎠ .

where

α1 = ∂g1(x, y, z)
∂x

= 2y
(

∂ f1(x, u)
∂x

− y
K

)(
1 − A

x

)
+ 2y

(
f1(x, u) − yx

K

)( A
x2

)

α2 = ∂g1(x, y, z)
∂y

=
(

2 f1(x, u) − 4
yx
K

)(
1 − A

x

)
, α3 = ∂g1(x, y, z)

∂z
= 0,

β1 = ∂g2(x, y, z)
∂x

= ∂ f2(x, y, z, u)
∂x

, β2 = ∂g2(x, y, z)
∂y

= −1 + ∂ f2(x, y, z, u)
∂y

β3 = ∂g2(x, y, z)
∂z

= ∂ f2(x, y, z, u)
∂z

, γ1 = ∂g3(x, y, z)
∂x

= ∂ f3(x, y, u)
∂x

,

γ2 = ∂g3(x, y, z)
∂y

= ∂ f3(x, y, u)
∂y

, γ3 = ∂g3(x, y, z)
∂z

= −1.

In the linear case, we have f1(x, u) = u
√

x, f2(x, y, z, u) = u
√

x + zy. With
Goodall’s model, we will have f3(x, y, u) = −uy

√
x. It follows that

α1 = 2y
(

u
2
√

x
− y

K

)(
1 − A

x

)
+ 2y

(
u
√

x − 2yx
K

)(
A
x2

)
,

α2 =
(

2u
√

x − 4
yx
K

)(
1 − A

x

)
, α3 = 0,

β1 = u
2
√

x
, β2 = z − 1, β3 = y,

γ1 = uy
2
√

x
= yβ1, γ2 = −u

√
x, γ3 = −1.

Now we discuss the stability of the steady states.
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B.1.1 Case 1: Stability of the Line (x, 0, 1), x > 0. In this case, we have

A0 := J(x, 0, 1) =

⎛
⎜⎜⎜⎜⎝

0 2u
√

x
(

1 − A
x

)
0

u
2
√

x
0 0

0 −u
√

x −1

⎞
⎟⎟⎟⎟⎠ .

The eigenvalues are

λ1 = −1, λ2 = u

√
1 − A

x
, λ3 = −u

√
1 − A

x
.

Since y := v = 0 	⇒ u = 0, the eigenvalues are actually

λ1 = −1, λ2 = 0, λ3 = 0.

Consequently, the line(x, 0, 1) is always stable.

B.2 Appendix B2.
Case 2: Stability of the lines Li, 1 ≤ i ≤ 2. For L1, we know that y = 1

and z = 1 − x
K , and

α1 = 2
(

u
2
√

x
− 1

K

)(
1 − 1

A

)
+ 2

(
u
√

x − 2x
K

)(
A
x2

)
,

α2 =
(

2u
√

x − 4x
K

)(
1 − A

x

)
, α3 = 0,

β1 = u
2
√

x
β2 = − x

K
β3 = −1,

γ1 = u
2
√

x
, γ2 = −u

√
x, γ3 = −1.

The Jacobian matrix of the system as is given at (x, 1, 1 − x
K ) is given as

A21 :=

⎛
⎜⎝

α1 α2 0

β1 β2 −1

β1 γ2 −1

⎞
⎟⎠ .

The characteristic polynomial is P(λ) = a3λ
3 + a2λ

2 + a1λ + a0, where

a3 = −1,

a2 = α1 + β2 − 1,
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a1 = α1(1 − β2) + β2 − γ2 + α2β1,

a0 = α1(γ2 − β2).

Case 21: a0 = 0. In this case, P(λ) = λ(−λ2 + a2λ + a1). The roots are

λ1 = 0, λ2 = 1
2

[
a2 −

√
a2

2 + 4a1

]
, λ3 = 1

2

[
a2 +

√
a2

2 + 4a1

]
.

Suppose that a2
2 + 4a1 < 0. If a2 < 0, then λ2 and λ3 are complex conjugates

eigenvalues with negative real parts. Thus, L1 is a stable attractor. If a2 > 0,
then L1 is unstable.

Suppose that a2
2 + 4a1 > 0. If a1 > 0 and a2 > 0, then λ2 and λ3 are real

eigenvalues with λ3 > 0. Thus, L1 is unstable. If a1 < 0 and a2 < 0, then λ2 <

0 and λ3 ≤ 1
2 [a2 + |a2|] = 0. It follows that L1 is stable. If a1 > 0 and a2 < 0

or a1 < 0 and a2 > 0, then one of the eigenvalues if positive, and thus L1 is
unstable.

Case 22: a0 > 0, a1 > 0, a2 > 0, and a1a2 > a0. In this case, by the Routh-
Hurwitz criterion (see Gradstein & Ryzhik, 2000), L1, L2 are stable. Since
these conditions are necessary and sufficient, L1, L2 are unstable if they are
not met.

B.2.1 Case 3: Stability of the points Bi, 1 ≤ i ≤ 2. For B1, we know that x =
A, y = −1 and z = 1 + u

√
A. In this case,

α1 = −2
(

u√
A

+ 2
K

)
; α2 = 0, α3 = 0,

β1 = u

2
√

A
, β2 = u

√
A; β3 = −1,

γ1 = − u

2
√

A
; γ2 = −u

√
A, γ3 = −1.

Reparameterizing as β = u
2
√

A
and γ = u

√
A, the Jacobian matrix of the sys-

tem at (x = A, y = −1, z = 1 + u
√

A) is given as

A31 :=

⎛
⎜⎝

α1 0 0

β γ −1

−β −γ −1

⎞
⎟⎠ .

λ1 = α1, λ2 = 1
2

[
γ − 1 +

√
(γ − 1)2 + 8γ

]
,

λ3 = 1
2

[
γ − 1 −

√
(γ − 1)2 + 8γ

]
.
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Case 311: u > 0. In this case, γ > 0, and therefore

√
(γ − 1)2 + 8γ =

√
γ 2 + 6γ + 1 =

√
(γ + 1)2 + 4γ ≥ |γ + 1| = γ + 1.

It follows that 2λ2 = γ − 1 +
√

(γ + 1)2 + 4γ ≥ 2γ > 0, and consequently,
the point B1 is unstable.

Case 312: u < 0. In this case, γ < 0, and therefore, λ3 < 0. We also have

0 ≤
√

(γ − 1)2 + 8γ ≤ |γ − 1| .

It follows that

γ − 1 ≤ 2λ2 ≤ γ − 1 + |γ − 1| .

Since γ < 0 < 1, we conclude that

γ − 1 ≤ 2λ2 ≤ 0.

We finally note that λ1 = α1 ≤ 0 if u ≥ − 2
√

A
K . We note that

max

{
−2

√
A

K
,−2

√
A

2A

}
= −2

√
A min

{
1

2A
,

1
K

}
= −2

√
A max {2A, K} .

We conclude that if − 2
√

A
K < 2

√
A max {2A, K} < u < 0, the point B1 is stable,

and if not, it is unstable.
For B2, we know that x = A, y = 1 and z = 1 − u

√
A. In this case, we have

α1 = 2
(

u√
A

− 2
K

)
; α2 = 0, α3 = 0,

β1 = u

2
√

A
, β2 = −u

√
A; β3 = −1,

γ1 = − u

2
√

A
; γ2 = −u

√
A, γ3 = −1.

Using the same reparameterization as above, the Jacobian matrix of the sys-
tem at (x = A, y = 1, z = 1 − u

√
A) is given as

A32 :=

⎛
⎜⎝

α1 0 0

β −γ −1

−β −γ −1

⎞
⎟⎠ .
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We find the eigenvalues to be

λ1 = 0 λ2 = α1, λ3 = −γ − 1.

Case 321: u > 0. In this case, λ3 < 0 since γ > 0. If u < 2
√

A
K , then λ2 =

α1 = 2
(

u√
A

− 2
K

)
< 0. It follows that B2 is stable, if not, it is unstable.

Case 322: u < 0. Then λ3 = −γ − 1 < 0 if γ > −1, that is, if u
√

A > −1.
Also, λ2 = α1 < 0 if u < 0. In conclusion

if − 1√
A

= −2
√

A
2A

< −2
√

A max {2A, K} < u < 0, the point B2 is stable.
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