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A general branching process model is proposed to describe the shortening of telomeres in eukaryotic
chromosomes. The model is flexible and incorporates many special cases to be found in the literature. In
particular, we show how telomere shortening can give rise to sigmoidal growth curves, an idea first expressed
by Portugal et al. [A computational model for telomere-dependent cell-replicative aging, BioSystems 91
(2008), pp. 262–267]. We also demonstrate how other types of growth curves arise if telomere shortening is
mitigated by other cellular processes. We compare our results with published data sets from the biological
literature.
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1. Introduction

Shortening of chromosome ends, known as telomeres, is one of the supposed mechanisms of
cellular ageing and death, and an explanation for the finite proliferative capacity of cell lines,
see [11,14]. Incomplete replication of DNA at the ends of linear chromosomes is predicted from
the known biochemical characteristics of DNA replication, the so-called end-replication problem,
but there is also evidence that oxidative stress plays a role, see [30,35]. Loss of telomeres is
counteracted by a mechanism to restore telomeres by the enzyme telomerase. In the absence of
telomerase, cells experience progressive shortening of telomeres and eventually stop dividing,
entering a senescent state.

The role of chromosomal telomere shortening is a fundamental problem in cell biology and
medicine and has been studied extensively for many different types of cells, for example, human
marrow stromal cells [4], goat’s skin fibroblast cells [13], human mesenchymal stem cells [6],
and the yeast Saccharomyces cerevisiae [5], just to mention a few. The biological process of
telomere shortening has also attracted interest from the mathematical modelling community,
and several variants of both deterministic and stochastic models have been proposed. Without
claiming to produce an exhaustive list, previous mathematical models of the process of telomere
shortening include Levy et al. [19], Arino et al. [1,2], Olofsson and Kimmel [25,26], Rubelj and
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528 P. Olofsson

Vondraček [31], Tan [34], Olofsson [23], Sozou and Kirkwood [33], op den Buijs et al. [28],
Dyson et al. [9], and Portugal et al. [29].

Sigmoidal growth curves are typical for many cell populations, for example, see [4]. In Portugal
et al. [29], telomere shortening was suggested as an explanation for such growth curves. More
specifically, under certain assumptions, the growth curve was shown to be very closely approx-
imated by the so-called Gompertz function, which is one of several classes of functions whose
graphs exhibit sigmoidal shape. The assumptions of Portugal et al. can probably be considered
unrealistic as they rely on cell cycle times being geometric (or, in the continuous case, exponen-
tial) thus having the memoryless property. Nevertheless, their results are mathematically elegant
and they seem to be the first to make the connection between sigmoidal growth and telomere
shortening.

We will show that sigmoidal growth curves arise under much less restrictive conditions than
those of Portugal et al. Such curves are typically not of the Gompertz type but, on the other hand,
data such as those in Baxter et al. [4] are far too crude to assign to any one particular type of
sigmoid. Moreover, it turns out that the sigmoidal shape is only approximate as we show below.

Our model is stochastic, in particular, it is developed within the framework of general (or
Crump–Mode–Jagers) multitype branching processes. This class of processes provides a model
for population dynamics where an individual may give birth many times during their life, and in the
next section we provide some of the basics. The exposé is selective and focuses on the definitions
and results we will need, leaving out some of the central theory that is not of immediate relevance
to our current endeavours. For a comprehensive treatment of general branching processes, see
[16,17].

2. General branching processes

In a general multitype branching process, each individual has a type that determines the probability
distribution according to which it reproduces. The type is chosen from the type space S which
can be quite general; in our applications, the type will correspond to the telomere length that is
discrete (measured in base pairs, bp, or nucleotides, nt) and we take the type space to be non-
negative integers N0. One central mathematical object in a general branching process is the mean
reproduction measure, μ(i, j × [0, t]), giving the expected number of children of type j born
in the age interval [0, t] of a mother of type i. To view μ as a measure, we use the notation
μ(i, j × dt). In order to describe the expected population dynamics, we need the convolution
powers of μ. More precisely, the operator ∗ is defined to denote convolution in time and the
Markov transition on S, so that

μ∗2(i, j × [0, t]) = μ ∗ μ(s, j × [0, t]) =
∑
k∈N0

∫ t

0
μ(k, j × [t − u])μ(i, k × du)

and the higher convolutions powers defined recursively as

μ∗n = μ∗(n−1) ∗ μ.

The zeroth convolution power is defined as μ∗0(i, j × dt) = δ(i,0)(j × dt), a point mass at
(i, 0). The renewal measure ν is defined as

ν(i, j × dt) =
∞∑

n=0

μ∗n(i, j × dt),

where ν(i, j × [0, t]) is the total number of type-j individuals born up to time t if the ancestor
is of type i, from now on denoted by Mij (t). The total number of individuals born up to time t
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Journal of Biological Dynamics 529

is then

ν(i, N0 × [0, t]) =
∑
j∈N0

ν(i, j × [0, t])

from now on denoted by Mi(t). If there is no death, ν(i, N0 × [0, t]) also gives the number of
individuals alive at time t . If there is death, denote the lifetime of an individual by L and convolve
the survival function of L with the renewal measure ν to get

Mij (t) =
∫ t

0
Pj (L > t − u)ν(i, j × du) (1)

and for the total number of individuals alive

Mi(t) =
∑
j∈N0

Mij (t). (2)

The convolution in Equation (1) is a special case of the elegant technique of using random
characteristics; see [16–18] for details.

3. The branching process model

Cell populations are often modelled by the so-called Bellman–Harris process, where an individual
reproduces by splitting at the end of its (random) lifetime. Thus, each mother cell has two daughter
cells at the end of her life, which is reasonable when modelling cells that reproduce by binary
fission. For cells that reproduce by budding, such as S. cerevisiae, there is, however, a clear
distinction between the mother and the daughter cell, which is why a general branching process is
more adequate in that it lets individuals reproduce several times. We can incorporate binary fission
into the general branching process by considering one of the two daughter cells as the surviving
mother and the other as the single daughter. If the cells need time to grow or if the mother has
experienced any changes (for example, in the telomere length), these factors can be accounted for
by the mean reproduction process as we shall see below.

In our branching process model, we let the type of an individual be its telomere length. It is
not clear exactly how telomere length triggers senescence, but there is some evidence that it
is the length of the shortest telomere that matters, see [15]. However, it has also been claimed that
the onset of senescence correlates better with the average telomere length than with the length of
the shortest telomere, see [21]. Our model does not hinge upon any one particular theory of the
onset of senescence. We denote the type of a cell by an integer i that may represent the length
of the shortest telomere or the average telomere length. A daughter cell thus inherits a type j

where j ≤ i. We will often assume for simplicity that telomere shortening is constant so that one
‘telomere unit’ is lost per replication event. Let 0 denote the critical level; thus, a cell of type 0 is
senescent and reproduces no more.

In yeast, it is well known that cells do not keep dividing indefinitely even if they have sufficient
telomeres, see [32]. Thus, there is an ageing process due to telomere shortening and another ageing
process due to other factors. The number of cell divisions a mother cell goes through is called
her (replicative) lifespan, not to be confused with her lifetime which is the total (chronological)
time she is present in the population. Consider an arbitrary cell and let N be its lifespan, that is,
the total possible number of daughter cells. Then N has range {0, 1, 2, . . .} and probability mass
function Pi(N = n) where i denotes the telomere length. Note that the probability Pi(N = n)

needs to take into account both telomere shortening and individual cell ageing.
To arrive at an expression for μ, let the consecutive cell cycle times be L1, L2, . . . , LN , where

the Lj are independent and Lj has cdf Fj . In many applications, it might be reasonable to let
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530 P. Olofsson

all the Fj be the same which we shall assume from now on. There is some evidence, however,
that cell cycle times tend to increase with ageing [32], which we could thus easily incorporate, if
needed. Next, let τk be the time of birth (= the age of the mother) of the kth daughter cell and let
σk denote the type of that daughter cell. Then

τk =
k∑

j=1

Lj ,

and we let

pij (k) = Pi(σk = j) (3)

for all k and j ≤ i. If a mother cell maintains the telomere length, the pij (k) do not depend on
k, but if telomeres are lost in both mother and daughter, there is dependence upon k. The mean
reproduction process is

μ(i, j × dt) =
∞∑

n=0

n∑
k=1

Pi(σk = j)Pi(τk ∈ dt)Pi(N = n)

=
∞∑

n=0

n∑
k=1

pij (k)F ∗k(dt)Pi(N = n) (4)

from which the renewal measure ν and the expected number of cells M(t) can be obtained. If
there is reason to believe that the Lj have different distributions, F ∗k(t) is simply replaced by
F1 ∗ · · · ∗ Fk(t).

4. Special cases

In this section, we examine four special cases of telomere shortening, depending on whether a
mother cell has finite or infinite lifespan, and whether a mother cell retains the telomere length or
loses telomeres. The relevance of such assumptions depends on the particular situation at hand,
and we will point out where they are applicable and have been used in the literature.

4.1. Example 1: Infinite lifespan, mother retains telomere length

Let us first assume that N ≡ ∞, i.e. cells keep reproducing indefinitely. Assume further that a
mother cell retains the telomere length whereas the daughter cell loses one telomere unit. This
is the model used in [1,2,19,25] and a special case of the model in Olofsson [23]. The model
may be realistic if a single chromosome is followed due to the semiconservative nature of DNA
replication, see [19]. This assumption means that we have pi,i−1(k) = 1 for all i > 1 and all k ≥ 1,
which gives

μ(i, i − 1 × dt) =
∞∑

n=1

F ∗n(dt)

and the convolution powers become

μ∗k(i, i − k × dt) =
∞∑

n=k

(
n − 1
k − 1

)
F ∗n(dt)

for k ≤ i.
The expression for μ∗k can be obtained directly by convolving μ with itself, but it also follows

from combinatorial considerations. Any cell of type i − k must be in the kth generation, and if it
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Journal of Biological Dynamics 531

is the result of the nth reproduction event (thus preceded by n − 1 reproduction events), the cdf of
the time is F ∗n and there are

(
n−1
k−1

)
places to ‘step up’ one generation. For more details regarding

this idea of proof, see [25].
The polynomial asymptotics established in [23,25] follow the form of the μ∗k . For example,

k = 1 gives

μ(i, i − 1 × [0, t]) =
∞∑

n=1

F ∗n(t) ∼ t

E[L]
by the elementary renewal theorem, see Grimmett and Stirzaker [12]. Hence, in this case we do
not get a sigmoidal growth curve.

4.2. Example 2: Finite lifespan, mother retains telomere length

Assume now that a mother retains the telomere length but is not able to reproduce indefinitely.
We still have pi,i−1(k) = 1 and get the mean reproduction measure

μ(i, i − 1 × dt) =
∞∑

n=0

n∑
k=1

F ∗k(dt)Pi(N = n)

=
∞∑

k=1

Pi(N ≥ k)F ∗k(dt)

by changing the order of summation. In particular, if we make the simplifying assumption that
N ≡ n0 for some n0, we get

μ(i, i − 1 × dt) =
n0∑

k=1

F ∗k(dt),

i.e. the same as in the previous example with ∞ replaced by n0. The convolution powers are easily
found to be

μ∗j (i, i − j × dt) =
n0∑

k1,...,kj =1

F ∗(k1+···+kj )(dt),

which gives M(t) by summing over j and adding 1 for the ancestor. Note that

μ(i, i − 1 × [0, t]) =
n0∑

k=1

F ∗k(t) −→ n0

as t → ∞ since F ∗k(t) → 1 for all k. This in turn implies that μ(i, i − 2 × [0, t]) → n2
0 and so

on, and it is easy to realize that the final population size equals

lim
t→∞ M(t) = 1 +

i∑
k=1

nk
0 = ni+1

0 − 1

n0 − 1

for n0 > 1, and limt→∞ M(t) = 1 + i for n0 = 1. The growth curve has a sigmoidal shape as
seen in Figure 1. We used i = 3 and n0 = 3 to get the final size 40.

Another version of this example is to let pi,i(k) = 1 for all k, which means that neither mother
nor daughter loses telomeres. This assumption is realistic, e.g. to model populations of telomerase-
proficient yeast cells where the telomere length is maintained, see [5]. Such populations grow
exponentially with a growth rate that is determined by n0 and cell cycle parameters.
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532 P. Olofsson

Figure 1. Growth curve for a cell population where mother cells retain the telomere length and have a lifespan of n0 = 3.

4.3. Example 3: Infinite lifespan, mother loses telomeres

Now, instead assume that a telomere unit is lost in both mother and daughter, which is the assump-
tion of, for example, Portugal et al. [29]. By ‘infinite lifespan’ we really mean that the replicative
lifespan of a cell is affected only by telomere shortening, which means that we now get
Pi(N = i) = 1 for all i. The first daughter of a type-i mother then has type i − 1, the second daugh-
ter has type i − 2, and so on. In this way, we can account for the fact that the mother’s telomere
length changes with each reproduction event. We thus have pi,i−j (j) = 1 for j = 1, . . . , i and get

μ(i, i − j × dt) = F ∗j (dt)

and, similarly to Example 1, the convolution powers become

μ∗k(i, i − j × dt) =
(

j − 1
k − 1

)
F ∗j (dt)

for k ≤ j ≤ i. The renewal measure becomes

ν(i, i − j × dt) =
j∑

k=1

(
j − 1
k − 1

)
F ∗j (dt)

= 2j−1F ∗j (dt)

which gives the expected total population size at time t as

Mi(t) = 1 +
i∑

j=1

2j−1F ∗j (t),

where the initial ‘1’ is the zeroth convolution power corresponding to the ancestor. As t → ∞,
F ∗j (t) → 1 for all j , which gives the final population size 2i .
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Journal of Biological Dynamics 533

Figure 2. Growth curves for cell populations where mother cells lose telomeres. The variance in cell cycle times is large
in the left plot and small in the right plot.

The population growth curve now exhibits a sigmoidal shape as can be seen in Figure 2, left
graph. Here i = 10, which gives the final population size 1024. Cell cycle times were taken to
follow a gamma distribution with mean 1 and variance 1/2. The growth curves obtained in Baxter
et al. [4] may fit into this example.

Growth curves are not always quite as smooth as they may appear, due to synchronization effects.
To illustrate these effects, we instead used a gamma distribution with mean 1 and variance 1/1000,
i.e. the coefficient of variation is only about 3%. With such a small variation in cell cycle times,
the population experiences regular growth spurts followed by periods of slow growth, depicted in
the right graph in Figure 2. It is well known that cell populations desynchronize so these effects
disappear over time but here the final size of 1024 is reached well before any desynchronization
effects can be observed. For more on cell cycle desynchronization, see [7,22,27].

4.4. Example 4: Finite lifespan, mother loses telomeres

We finish with the most realistic and most interesting case. Assume that a mother loses telomeres
and is also limited in reproduction due to her lifespan n0 (again assumed constant for simplicity).
This scenario is realistic for many cell populations, applying, e.g. to S. cerevisiae where a mother
cell is known to have both a limited lifespan and experience telomere shortening, see [5,32]. The
mean reproduction measure is easily obtained as

μ(i, i − k × dt) = F ∗k(dt)

for k ≤ min(i, n0). The convolution powers are complicated to deal with because reproduction
is limited by both telomere length and lifespan. A cell with the telomere length j can produce
min(j, n0) daughter cells so if the ancestor has a telomere length of i > n0, cells in the first
i − n0 generations will be able to reproduce n0 times and, thereafter, reproduction is limited by
the telomere length. Rather than computing convolution powers explicitly, we will arrive at an
expression for Mi(t) through an alternative way of reasoning.

The population starts from a single cell of type i and upon completion of the cell cycle, this cell
has produced one daughter cell and then both mother and daughter have type (telomere length)
i − 1. For simplicity, we refer to the two cells as the first ‘generation’. Let m(k) denote the
expected number of cells in the kth generation. Now note that each cell in the kth generation is
present in the population if the sum of k cell cycle times is less than t , but the sum of k + 1 cell
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534 P. Olofsson

cycle times is greater than t . As the probability of this event is F ∗k(t) − F ∗(k+1)(t), the expected
number of cells from the kth generation that are present at t equals

m(k)(F ∗k(t) − F ∗(k+1)(t)),

and thus the expected total number of cells at time t equals

Mi(t) = 1 − F(t) +
i−1∑
k=1

m(k)(F ∗k(t) − F ∗(k+1)(t)) + m(i)F ∗i (t). (5)

Note that we have m(k) = 2k as long as k ≤ n0. For k > n0, we describe a recursive scheme
that enables us to compute m(k). To that end, in any given generation, let kj be the number of
cells that are able to reproduce j times. Let us say that these cells belong to class j (and do not
confuse ‘class’with ‘type’which is the telomere length) for j = 0, 1, . . . , n0. Each cell with j ≥ 1
produces a daughter cell that is able to reproduce n0 times and is then itself able to reproduce
another j − 1 times. Hence, the kj cells in class j produce kj cells in class j − 1 and kj cells
in class n0. Cells with j = 0 remain unchanged. For n0 ≤ k ≤ n, the transition from generation
k − 1 to generation k is therefore as follows:

Generation k − 1 : (k0, k1, . . . , kn0−1, kn0)

Generation k :
(

k0 + k1, k2, . . . , kn0 ,

n0∑
i=1

ki

)

and after relabelling in generation k to (k0, k1, . . . , kn0) again, we have m(k) = ∑n0
j=0 kj .1 The

initial configuration in generation 0 is (0, 0, . . . , 0, 1) since there is one cell that is able to divide n0

times. Note that if there are k0 + N cells in generation k − 1, there are k0 + 2N cells in generation
k, as expected. For k ≥ i, all cells are senescent, so m(k) stays constant and we have m(k) = m(i)

for k ≥ i, m(i) thus being the final population size.

Figure 3. Growth curves for cell populations where mother cells lose telomeres. The lifespan is infinite for the dashed
curve and finite for the solid curve.
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Figure 4. Growth curve for a cell population where senescent cells eventually die.

Figure 3 illustrates the difference between infinite lifespan (Example 3, dashed curve) and
finite lifespan (solid curve) when both mother and daughter lose telomeres. The parameters are
i = 10 and n0 = 3, which give the final population sizes 210 = 1024 for the dashed curve and
m(10) = 600 for the solid curve.

5. Cell death

In the examples above, we have assumed that cells do not die but stay in the population as
senescent. This assumption may be reasonable in many experimental situations if cells do not die
during the course of the experiment. Realistically, however, senescent cells will eventually start
dying and we can model such cell death simply by letting a senescent cell have a lifetime Ls with
the cdf Fs . The lifetime L of a cell equals the total time spent going through cell cycles plus its
additional life: L = L1 + · · · + LN + Ls . The population size at time t is obtained by convolving
the survival function Pi(L > t) with the renewal measure ν according to Equations (1) and (2).

The growth curve now exhibits the typical phases of exponential growth, stationarity, and death,
see Figure 4. By adding an initial quantity to the lifetime of the ancestor, we can also incorporate
the initial lag phase present in many observed cell populations such as bacteria; for example, see
Baranyi [3].

6. Survivors

An interesting phenomenon observed in both yeast cells and human cells is that cell populations
whose growth rates slow down due to telomere shortening have the potential to regain the growth
rate, presumably due to a recombination mechanism that enables maintenance of short telomeres,
see [5,8]. It is believed that the onset of this mechanism does not necessarily occur in all cells,
rather, it is a stochastic event that creates ‘survivors’ that will later dominate the population.
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536 P. Olofsson

We thus assume that cells that have reached the zero telomere length have the possibility
to become survivors with some probability p and consider the two different scenarios. (1)
Survivorship is inherited so each survivor starts a population where the telomere length is main-
tained and (2) Survivorship is random, so each cell becomes a survivor with probability p at each
reproduction event, independently of other cells. To treat the most realistic case, we stay within
Example 4 above, where a mother cell loses telomeres and has a finite lifespan n0.

In Case 1, the population evolves as before until the nth generation when the proportion p turn
into survivors. The survivors are unrestricted by telomere length but still restricted by the lifespan
n0. The expected number of cells at time t is now given by the expression

Mi(t) = 1 +
∞∑

k=1

m(k)(F ∗k(t) − F ∗(k+1)(t)), (6)

where the only difference from Equation (5) is that the sum over k goes to ∞ rather than i.
The typical growth curve displays initial sigmoidal shape but after levelling off for a while, the
exponential growth is eventually restored as survivors take over the population. For further details,
we refer to Olofsson and Bertuch [23].

In Case 2, the survivorship is not inherited but occurs independently with probability p in each
newborn cell. Again, the expected number of cells is given by Equation (6) where the population
evolves as before until the nth generation. Thereafter, the expression for m(k) changes because a
survivor undergoing a reproduction event may result in 0,1, or 2 survivors, depending on whether
the daughter cell gets survivor status and whether it retains its own survivor status. This scenario
leads to a recursive relation that is a modified version of the one above in Example 4. As before,
let kj be the number of cells that are able to reproduce j times for j = 0, 1, . . . , n0 to obtain the
transition from generation k − 1 to generation k as follows:

Generation k − 1 : (k0, k1, . . . , kn0−1, kn0)

Generation k :
(

k0 + (2 − p)k1 + 2(1 − p)

n0∑
i=2

ki, pk2, . . . , pkn0 , p

n0∑
i=1

ki

)
.

The expression above reveals that cells in the n0 category are created from all other cells, each
time with probability p. For category j with 0 < j < n0, cells are created from cells in category

Figure 5. Growth curves of cell populations where cells may regain telomere maintenance (left). Data from S. cerevisiae
(right).
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j + 1, again with probability p. Cells that fail to become survivors are added to the senescent
category zero. Again, note that if there are k0 + N cells in generation k, there are k0 + 2N cells
in generation k + 1.

In Figure 5, the left graph shows growth curves for Case 1 (solid curve, p = 0.01) and Case 2
(dashed curve, p = 0.6). For easier comparison, the curves are on a logarithmic scale and it is
clear that the initial growth rate is restored in Case 1 but not in Case 2. The explanation is of
course that survivors in Case 1 double their numbers after each generation whereas survivors in
Case 2 increase their numbers by a factor 2p, on average (as long as they are able to reproduce).
Since p is large in Case 2, this population initially has many more survivors but as survivorship
is not inherited, the population growth quickly falls behind that of Case 1. The right graph shows
the average of seven cell populations studied in Bertuch and Lundblad [5], indicating that Case 1
gives the better (qualitative) description in this case.

7. Discussion

We have proposed a class of stochastic models for the shortening of telomeres in chromoso-
mal DNA. The models are stated within the framework of general branching processes where
individuals are allowed to reproduce several times during their lives, and where individuals of
different types may reproduce differently. In particular, we address the issue of sigmoidal growth
curves of cell populations and how these can be explained by telomere shortening. The first paper
making such a connection seems to be Portugal et al. [29], whose model is a special case of ours.We
show that different types of growth curves are obtained depending on assumptions about whether
mother cells maintain the telomere length and whether the lifespan is finite or infinite, and also
depending on whether telomere maintenance can be restored after an initial period of shortening.

The examples we provide are simplified for clarity and ease of computation. For example,
telomeres are lost in units of a fixed size and both telomere shortening and cell cycle times
are assumed to be independent of the telomere length. There is evidence that cell cycle times
may slow down in older cells [32] and that shortening depends on length [28] and although we
ignored such considerations in the examples, they are easily incorporated in the general model by
adjusting the quantities in Equation (4). Also the possibility of telomere shortening by oxidative
stress [30,35], which might also increase with ageing, can be incorporated in the model by choosing
the probabilities in Equation (3) appropriately.

Although the present article is mostly concerned with establishing a general framework to
model the shortening of telomeres, we have also considered data sets that corroborate our models,
for example, data from human marrow stromal cells [4] and from yeast [5,20]. The data in Bertuch
and Lundblad are under investigation for more detailed modelling and analysis in Olofsson and
Bertuch [24].

Note

1. Note that the numbers kj for j ≥ 1 constitute an ‘n0-nacci’ sequence, that is, a generalized Fibonacci sequence
where each new number is obtained by adding the previous n0 numbers, starting from (0, 0, . . . , 0, 1), see [10].
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