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a b s t r a c t

Speciation is characterized by the development of reproductive isolating barriers between diverging
groups. Intrinsic post-zygotic barriers of the type envisioned by Bateson, Dobzhansky, and Muller are del-
eterious epistatic interactions among loci that reduce hybrid fitness, leading to reproductive isolation.
The first formal population genetic model of the development of these barriers was published by Orr
in 1995, and here we develop a more general model of this process by incorporating finite protein–pro-
tein interaction networks, which reduce the probability of deleterious interactions in vivo. Our model
shows that the development of deleterious interactions is limited by the density of the protein–protein
interaction network. We have confirmed our analytical predictions of the number of possible interactions
given the number of allele substitutions by using simulations on the Saccharomyces cerevisiae protein–
protein interaction network. These results allow us to define the rate at which deleterious interactions
are expected to form, and hence the speciation rate, for any protein–protein interaction network.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

A long-recognized hallmark of speciation is the development of
intrinsic reproductive isolating barriers (RIB). As evolutionary prin-
ciples were being reconciled with modern genetics, Bateson [2],
Dobzhansky [5], and Muller [16] independently derived genetic
models that allowed for the development of these barriers in
diverging lineages. All of these models, now collectively called
the BDM model, describe how fixation of mutations at two or more
loci in different populations could produce inviability or sterility in
hybrid offspring, without the mutations causing lowered fitness
within either population. Briefly, the BDM model starts with an
ancestral population of genotype aabb; in one population, the A al-
lele arises and becomes fixed, while in the other population, B
arises and is fixed. The resulting hybrid from the AAbb� aaBB cross
would have genotype AaBb, and as A and B have never been ‘tested’
together, they could behave epistatically to cause a deleterious
incompatibility. The accumulation of such Bateson–Dobzhansky–
Muller incompatibilities (BDMIs) can cause permanent isolation,
and hence speciation. Recent empirical work in a variety of taxa

has led to the genetic characterization of BDMIs, including cloning
of the loci involved [1,21,22].

Although the BDM model for the development of RIBs was
widely accepted, relatively few efforts were made to extend this
theory until Orr’s landmark paper [17], which has subsequently
been elaborated on by many others [26,8,12,7,20,6]. In the basic
Orr model, two diverging lineages fix new alleles at K loci between
them, and each new allele that arises has a probability p of causing
a negative interaction with any of the alleles in the other genome
where a substitution has occurred. One of the main insights to
come from this model is that the probability of speciation rises
as a function of K2, a phenomenon that has come to be known as
the snowball effect. This snowballing of BDMIs has recently been
described in both Drosophila [13] and Solanum [15].

We know, however, that not all genes in the genome interact
with each other in a way that could lead to the possibility of BDMIs
between them. In fact, we have learned through genomics and pro-
teomics techniques that most proteins in a protein–protein inter-
action (PPI) network are connected to only a small number of
other proteins, while very few proteins act as central hubs with
myriad interactions [10,27]. While Orr recognized the importance
of interaction networks in a later paper [19], no formal treatment
of complex networks was developed. In this work, we incorporate
the structure of finite PPI networks to create a more general model
for the development of BDMIs.
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2. Methods

2.1. Model

The starting point for the model is a network of the interactions
between loci present in the most recent common ancestor of two
diverging groups. Interactions here are defined broadly, and could
be physical, genetic, or biochemical, so long as there exists a way
for the loci to possibly cause a BDMI. We treat interaction networks
as undirected graphs where each node of the graph represents a lo-
cus, and each existing interaction is denoted by an edge. These
graphs have no parallel edges, and because they are undirected,
there is no distinction between edges ða; bÞ and ðb; aÞ. The process
of developing BDMIs proceeds by randomly selecting nodes with-
out replacement, which corresponds to mutations being fixed in
either lineage, allowing only one mutation per locus. A potential
BDMI arises when both nodes connected by an edge are selected,
and the number of potential BDMIs after K mutations is a random
variable, XK .

We consider three different protein interaction network types
that we call the complete, biological, and disjoint networks
(Fig. 1). The parameters we use to describe the properties of each
graph and the speciation process are N, the number of nodes in

the graph; NE, the number of edges in the graph; and K, the number
of substitutions occurring in either lineage since divergence. In the
complete network (Fig. 1A), every protein has an interaction with
every other protein, and XK � K

2

� �
. In this formulation, speciation

would occur as described in Orr’s original model [17].
The second network we consider is termed the biological net-

work (Fig. 1B). PPI networks characterized to date follow a power
law [27], which translates to order of magnitude differences in
the number of edges per node in the network, which we reasoned
would affect XK . As a starting point for modeling a biological PPI
network, we used the database of physical and genetic interactions
from Saccharomyces cerevisiae in BioGrid Release 2.0.55 [25], which
contains 6018 nodes and 157,861 edges after removing duplicates
and converting directed edges to undirected edges. While previous
studies have shown that network databases can have high false po-
sitive and negative rates [23], to our knowledge S. cerevisiae has the
most complete and reliable of the PPI networks, and thus makes
the best model.

The disjoint network (Fig. 1C) models speciation through a pro-
cess of reciprocal silencing of gene duplicates, a phenomenon seen
in Arabidopsis [3] and Oryza sativa [14]. In this graph, the nodes
represent pairs of gene duplications present in the ancestral gen-
ome, and these pairs are connected by an edge because an organ-
ism must have at least one functioning duplicate in order to
survive. Reproductive isolation in this model occurs when an
ancestral population with duplicated loci A1 and A2 splits, and in
one population the A1 allele is silenced to give genotype
A1sA1s A2A2, while in the second population the other duplicate
is silenced, giving the genotype A1A1 A2sA2s. The hybrid of these
two populations would be genotype A1A1s A2A2s, which would
be viable because it possesses a functional copy of both genes,
but a proportion of selfed progeny from this individual would have
genotype A1sA1s A2sA2s, and would therefore be inviable or sterile.
In this model, small islands of the genome become isolated first,
which could eventually lead to complete isolation. Analytically,
the disjoint graph represents a ‘worst case’ scenario for speciation
due to the fact that it has the lowest possible number of edges (N

2)
in a graph where all nodes have at least one connection.

2.2. Analytical methods

In Orr’s model, the probability of speciation, S, is given by:

S ¼ 1�
QK
n¼1
ð1� pÞn�1 ¼ 1� ð1� pÞ

K

2

� �
ð1Þ

where K is the number of mutations in both lineages, and p is the
probability of a deleterious interaction between two loci. In our
model, we let XK be a random variable representing the number
of potential BDMIs after K mutations, such that the conditional
probability of speciation can be expressed as

S ¼ 1� ð1� pÞXK ð2Þ

which we note is itself a random variable that depends on XK . An
expression for the (unconditional) probability of speciation is ob-
tained by computing the expected value of S:

E½S� ¼ 1�
PNE

j¼1
ð1� pÞjPðXK ¼ jÞ ð3Þ

Because this probability needs the distribution of XK , which may be
difficult to express, we use a first order Taylor expansion to approx-
imate E½S� as a function of the expected number of potential BDMIs,
E½XK �, between the K selected loci:

E½S� � 1� ð1� pÞE½XK � ð4Þ

A

B

C

Fig. 1. Classes of graph topologies considered in this study. (A) The complete graph,
where all nodes connect to all other nodes. (B) The biological graph, which models
networks with high variability in connectivity among nodes. (C) The disjoint graph,
where each node connects to only one other node. In each graph nodes are
considered to be loci and edges represent interactions between the two loci.
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For any network structure, we must thus find E½XK �, and a gen-
eral way to do this given the variety of topologies is to use an indi-
cator function. An indicator function I is a random variable that
takes on values in {0,1}, as determined by whether some event is
considered a success, in which case I ¼ 1. We can enumerate the
edges in the graph from 1 to NE, and for edge j let success be de-
fined by selecting its two nodes. Then

XK ¼
PNE

j¼1
Ij ð5Þ

and by additivity of expected values:

E½XK � ¼
PNE

j¼1
E½Ij� ¼

PNE

j¼1
1 � PðIj ¼ 1Þ ð6Þ

We can compute PðIj ¼ 1Þ by considering that there are N
K

� �
possible

sets of affected loci after K substitutions, and N�2
K�2

� �
sets remaining if

the two nodes of a specific edge must be included in the set of K
substitutions, leading to

PðIj ¼ 1Þ ¼
N�2
K�2

� �
N
K

� � ¼ KðK � 1Þ
NðN � 1Þ for all j

and

E½XK � ¼ NE
KðK � 1Þ
NðN � 1Þ ¼ a � K

2

� �
ð7Þ

where a ¼ NE
N
2ð Þ, the density of the network. The probability of speci-

ation can now be expressed as follows:

E½S� � 1� ð1� pÞa
K
2ð Þ ð8Þ

Note that E½XK � is not dependent on the specific distribution of
edges, only on K;NE, and N, and so this equation can be applied to
any network topology.

In order to more fully describe the trajectory of speciation, we
can also use a first order Taylor expansion to provide the variance
of S, for which we need Var½XK �. While we can find a general func-
tion directly relating a and E½XK �, the specific structure of a network
impacts the variance of XK , which can be calculated as follows:

Var½XK � ¼ NE � P2ð1� P2Þ

þ 2 � Ns � P3 þ
NE

2

� �
� NS

� �
� P4 �

NE

2

� �
� P2

2

� �
ð9Þ

where NE = the number of edges total, NS = the number of edge pairs

that share a node, P2 ¼
N�2
K�2ð Þ

N
Kð Þ ; P3 ¼

N�3
K�3ð Þ

N
Kð Þ , and P4 ¼

N�4
K�4ð Þ

N
Kð Þ . For proof of

this equation, see the Appendix. Since no edge pairs share a node
in the disjoint model, the equation for the variance in this graph
is reduced to the following:

Var½XK � ¼ NE � P2 1� P2ð Þ þ 2 � NE

2

� �
� P4 �

NE

2

� �
� P2

2

� �
ð10Þ

In the complete graph the variance is naturally 0.
We can use Var½XK � to calculate the variance of S ¼ 1� ð1� pÞXK

using the first order Taylor expansion:

Var½S� � Var½XK � � ð1� pÞ2�E½XK �ðlogð1� pÞÞ2 ð11Þ

3. Results and discussion

The accuracy of the approximation in Eq. (8) to the exact
expression in Eq. (3) was examined for the three networks. For
the complete network, Eqs. (3) and (8) are identical because
XK � K

2

� �
. For the disjoint network, the probabilities PðXK ¼ jÞ can

be computed explicitly as

PðXK ¼ jÞ ¼
N=2

j

� �
N=2�j
K�2j

� �
2K�2j

N
K

� � ð12Þ

for j ¼ 0; . . . ; bK=2c, where b�c denotes the floor function (for a proof,
see the Appendix). Calculations reveal that Eqs. (3) and (8) agree very
well over wide ranges of K;N, and p values for the disjoint network.

The agreement between Eqs. (3) and (8) in the biological net-
work was examined by running simulations for values of K from 5
to 490, in increments of 5. In each simulation, K nodes were chosen
without replacement assuming a 1/N probability of selecting any
node, and the number of edges between these K nodes, XK , was
counted. The process was repeated for each value of K until the fre-
quencies converged on stable estimates. The frequencies were then
used to estimate the probabilities PðXK ¼ jÞ in (3) to compute E½S�
and compare to Eq. (8). As with the other two network models,
the two expressions also agree well for the biological network.

The fact that E½XK � can be computed from the network density
alone leads to questions of how sensitive this analysis is to the
reliability of the PPI dataset, especially given questions of high false
positive and negative rates in these datasets [23]. We note that
changes in NE versus changes in a are proportional for fixed N,
and consequently false positive and negative rates are less of a con-
cern when N is large. As an example, in the case of the yeast data,
adding in or taking away 10,000 edges only increases or decreases
a by 6.3%.

We can use this model to examine the dynamics of speciation in
each of the three networks we have considered. We have shown
that the probability of speciation is dependent on the density of
the network, a, and the probability of an interaction being delete-
rious, p. As stated before, the complete network is the finite repre-
sentation of Orr’s model, with a ¼ 1. In a complete network
comparable in size to the yeast PPI network (N ¼ 6018), incompat-
ibilities snowball and speciation proceeds at a very rapid rate for
10�5 < p < 10�2 (Fig. 2A). In the slowest scenario with p ¼ 10�5,
the cumulative probability of speciation is 1 after substitutions
have occurred at 20% of the loci.

The disjoint model represents the need for at least one func-
tional member from a pair of gene duplicates in the genome. We
have modeled speciation in a disjoint network with 6018 loci, rep-
resenting a genome comprised entirely of 3009 duplicated loci
(Fig. 2C); while this is clearly implausible biologically, it does allow
for comparisons to the other networks. The disjoint network has
a ¼ 1

N�1, the lowest possible value for a in a network where each
node has at least one edge, leading to the slowest predicted rate
of speciation. Interestingly, if we assume that intraspecific varia-
tion reflects recent fixation, this prediction is at odds with observa-
tions of BDMI caused by reciprocal silencing of duplicates among
populations of Arabidopsis [3] and Oryza [14]. These results could
be reconciled by considering that mutations affecting duplicates
occur more frequently, and that these mutations could have p ¼ 1.

Speciation in the biological network proceeds at rates interme-
diate to the complete and disjoint networks (Fig. 2B). As the biolog-
ical network presumably best approximates the real dynamics of
BDMI accumulation, we can use it as a null model to look at speci-
ation dynamics and to refine parameter estimates given additional
assumptions and data. As an example, we can use this model to
examine p. True biological estimates for p would be extremely dif-
ficult to obtain, as multiple alleles would need to be created for
both loci in an interaction, with all pairwise combinations evalu-
ated to determine the phenotypic effects. As this would be possible
but painstaking in only a few organisms, models such as this offer
us one way to gain insight into this parameter.

We can use this model to obtain a lower bound for p by follow-
ing Orr in defining the random variable KS, the mutation that
causes reproductive isolation. In our model, the probability that
KS > N is non-zero, which makes KS not well defined. It seems
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reasonable, however, to assume that speciation will occur before
all loci in the genome have undergone substitutions, which makes
PðKS > NÞ ¼ ð1� pÞNE negligible. In effect, a reasonable range for p
can be bounded by NE alone. In the case of the yeast PPI network, if
we set PðKS > NÞ 6 0:001, we estimate that p P 4:4� 10�5.

We can also define the high end of the range for p by combining
this model with experimental data. Under the assumption that
speciation occurs before all loci in the genome have undergone
substitution, we can compute E½KS� conditional on KS 6 N:

E½KSjKS 6 N� �
ffiffiffiffiffiffiffiffiffi
p

2ap

r
ð13Þ

(for derivation see [17]). We can then apply this equation to the
example of laboratory speciation in S. cerevisiae, where a BDMI
was seen after 500 generations of strong divergent selection and
17 confirmed allelic substitutions [1]. Substituting 17 for KS gives

an estimate of p � 0:6 in this system, which admittedly seems
rather high. It is possible the high value for p estimated from the
S. cerevisiae data could be an artifact of the particular loci under
selection in these divergent environments. This hypothesis could
be tested by repeated lab trials under a variety of paired environ-
ments, which could give both true mean values for KS for each con-
dition and means for a variety of conditions, providing an upper
bound for p. We recognize that these two estimates for p vary over
four orders of magnitude, and that the answer will most likely lie
somewhere in the middle.

Another important use of this model is that it forms a frame-
work for considering BDMIs that arise through more complex
interactions. It has been shown that the number of possible com-
plex interactions rises dramatically more quickly than the number
of pairwise interactions [28], and that complex interactions have
been seen to cause RIBs in Saccharomyces sensu stricto yeasts [11]
and Drosophila [4,18]. Some well established models look at such
interactions [8,9], but it is difficult to make progress with these
models primarily because there is no good definition for what con-
stitutes a complex interaction. Using this model we can define
complex interactions as subgraphs in the network with specific
levels of connectivity, as paths between loci, or any other biologi-
cally plausible way that multiple loci could interact. These defini-
tions could lead to either analytical or simulation-based results
that shed light on the question of the relative frequency of complex
vs. simple interactions in the speciation process. One thing we can
be certain of, however, is that incomplete biological networks will
slow this process relative to complete networks, and our model
does provide a framework for such investigations.

Finally, we note that our model presents an intriguing hypoth-
esis as to why taxonomic groups may have correlated rates of spe-
ciation [24]. It can be assumed that the protein interaction
networks for related taxa are of a similar size and density, which
could lead to similar speciation rates under this model. While other
factors undoubtedly play a role in these processes, similarities in
PPI networks among related taxa could account for at least part
of this phenomenon.
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Appendix A. Proofs

Proof of Eq. (9). In order to find the variance an approach must
be made which takes into account the structure of individual
nodes. Recall that

XK ¼
PNE

j¼1
Ij

and hence

Var½XK � ¼
PNE

j¼1
Var½Ij� þ

PNE

i–j¼1
Cov ½Ii; Ij�

where

Var½Ij� ¼ E½I2
j � � E½Ij�2

and

Cov ½Ii; Ij� ¼ E½Ii � Ij� � E½Ii�E½Ij�

Since Ij 2 f0;1g it follows that

E½I2
j � ¼ E½Ij� ¼ PðIj ¼ 1Þ ¼ P2

Fig. 2. Cumulative speciation probability curves vs. fraction of substituted loci for
the three different networks. Curves for the (A) complete, (B) biological, and (C)
disjoint networks are shown. In all plots, K is the number of substitutions, N ¼ 6018
and p ¼ 10�2 (solid), 10�3 (dots), 10�4 (dashed), or 10�5 (dash-dot).
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so

Var½Ij� ¼ P2ð1� P2Þ

For the covariance,

E½Ii� ¼ E½Ij� ¼ P2

and

E½Ii � Ij� ¼ PðIi ¼ 1 and Ij ¼ 1Þ

the latter probability being dependent on whether the pair of edges
share a node, or if they are disjoint. If they share a node, then

PðIi ¼ 1 and Ij ¼ 1Þ ¼
N�3
K�3

� �
N
K

� � ¼ P3

If they do not share a node, then

PðIi ¼ 1 and Ij ¼ 1Þ ¼
N�4
K�4

� �
N
K

� � ¼ P4

Using the notation from the expected value,

PNE

i–j¼1
Cov ½Ii; Ij� ¼ 2 �

PNE

i<j¼1
Cov½Ii; Ij�

¼ 2 � ðNS � P3 þ ND � P4Þ �
NE

2

� �
� P2

2

� �

where NS is the number of edge pairs which share a node, and ND is
the number of edge pairs that do not share a node. Therefore

Var½XK � ¼ NE � P2ð1� P2Þ þ 2

� Ns � P3 þ
NE

2

� �
� NS

� �
� P4 �

NE

2

� �
� P2

2

� �

Proof of Eq. (12). In the disjoint network, there are N nodes and
N=2 edges. We choose K nodes at random and consider the event
that we get XK ¼ j edges. The total number of choices equals N

K

� �
and to get the expression in the numerator, first note that there

are N=2
j

� �
sets of j edges. To get a specific such set, we need to

choose the 2j nodes in it and the remaining K � 2j nodes must be
chosen among the remaining N=2� j nodes such that no more
edges are included. In other words, the remaining nodes must be
chosen by choosing one of the remaining N=2� j edges for each

of the K � 2j nodes, and there are N=2�j
k�2j

� �
such choices. Finally, since

each edge has 2 nodes, there are 2K�2j possible node arrangements
for a given set of K � 2j edges and Eq. (12) follows.
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