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POPULATION DYNAMICS

Goal: to describe and analyze properties of populations of re-
producing individuals.

1. Deterministic methods (e.g., differential equations)

• “top down,” start on population level,
dx

dt
= f(x(t))

• no connection between individuals and population

• only describe expected values, no extinction

• easy to deal with dependencies, feedback, “nonlinearity”

2. Stochastic methods (e.g., branching processes)

• “bottom up,” start on individual level, P (k children) = pk

• relate individual behavior to population behavior

• expected values, variances, large deviations, extinction

• difficult to deal with dependencies, feedback, “nonlinearity”
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BRANCHING PROCESSES

1. Galton-Watson process, discrete time, synchronized gen-
erations

2. General branching process, continuous time, overlapping
generations
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GALTON-WATSON PROCESS

• Number of children X, random variable on {0, 1, 2, ...}

• Size of nth generation:

Zn =
Zn−1∑
k=1

Xk, n = 1, 2, ... (Z0 ≡ 1)

• Growth rate: mn, where m = E[X]

• Convergence:
Zn

mn
→ W as n →∞.
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GENERAL (CRUMP-MODE-JAGERS) BRANCHING
PROCESS

• Reproduction process, ξ: point process on [0,∞)

ξ(a) =
∫ a

0
ξ(dt) = number of children up to age a

• Mean reproduction process µ(a) = E[ξ(a)], µ(dt) = E[ξ(dt)]

• Growth rate: eαt, where Malthusian parameter α solves the
equation

µ̂(α) =
∫ ∞

0
e−αtµ(dt) = 1

• Galton-Watson process: ξ(dt) = Xδ1(dt),

ξ(a) =

 0 if a < 1
X if a ≥ 1

In this case,

∫ ∞

0
e−αtµ(dt) = me−α = 1

gives α = log m and eαt = mn.

5



RANDOM CHARACTERISTICS

• random characteristic χ, stochastic process, χ(a): contribu-
tion of an individual at age a

• χ-counted population

Zχ
t =

∑
x∈I

χx(t− τx)

where

I =set of all individuals
τx=birth time of individual x, age t− τx at time t

Examples:

1. χ(a) = IR+
(a) – indicator of being born, Zχ

t = number of
individuals born before t

2. χ(a) = I[0,L)(a) – indicator of being alive, Zχ
t = number of

individuals alive at time t
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CONVERGENCE RESULT

As t →∞,

e−αtZχ
t → c W

where W is a random variable and

c =
∫ ∞

0
e−αtE[χ(dt)]

In the limit, χ enters only as a constant. Thus:

Zχ1
t

Zχ2
t

→ c1

c2

Asymptotic stability, for example stable age distribution.
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CELL POPULATIONS WITH QUIESCENCE

(O., Journal of Biological Dynamics, 2(4), 2008)

Cell cycle:

(www.knowledgerush.com)

G1 phase – growth and preparation for DNA synthesis

S (synthesis) phase – DNA replication

G2 phase – growth and preparation for division

M(mitosis) phase – cell division

G0 phase – quiescence, possible at restriction point
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PDE MODEL

Arino, Sànchez, Webb (1997)
Dyson, Villella-Bressan, Webb (2002)

p(a, t): density of proliferating cells
q(a, t): density of quiescent cells



dp

dt
+

dp

da
= −(µ(a) + σ(a))p(a, t) + τ(a)q(a, t)

dq

dt
+

dq

da
= −σ(a)p(a, t)− τ(a)q(a, t)

µ: division rate
σ, τ : transition rates

Lots of conditions ⇒ asynchronous exponential growth, conver-
gence toward stable proportion of quiescent cells
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BRANCHING PROCESS MODEL

quiescent

time t

Fraction 1/4 of quiescent cells at time t. As t →∞?
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LIFETIMES AND GROWTH RATE

  T

  T

U

U

L =

 T + U with prob 1− q
T + G0 + U with prob q

Binary splitting, no death: ξ(dt) = 2δL(dt), µ(dt) = 2FL(dt).

Malthusian parameter given by

2F̂L(α) = 2(1− q)F̂T+U(α) + 2qF̂T+G0+U(α) = 1

Laplace transform: F̂ (α) =
∫ ∞

0
e−αtF (dt)
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CHARACTERISTICS AND ASYMPTOTICS

Quiescent cells:

χq(a) = I{Q∩{T < a, T+G0 > a}} =

 1 if quiescent at age a
0 otherwise

All cells:

χ(a) = I{L > a} =

 1 if alive at age a
0 otherwise

Fraction of quiescent cells:

Q(t) =
Z

χq

t

Zχ
t

→ cq

c

where

cq = q
∫ ∞

0
e−αtP (T < t < T + G0)dt

c =
∫ ∞

0
e−αtP (L > t)dt
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AN EXAMPLE

T, U , G0 independent Γ(3, 1)

Malthusian parameter:

2(1− q)

(1 + α)6 +
2q

(1 + α)9 = 1

q = 0.9 gives α ≈ 0.08 and cq/c ≈ 0.30 so

Q(t) → 0.30 as t →∞
How does Q(t) approach its limit?
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RENEWAL THEORY

For any general branching process:

E[Zχ
t ] = E[χ(t)] +

∫ t

0
E[Zχ

t−u]µ(du)

with solution

E[Zχ
t ] =

∞∑
n=0

∫ t

0
E[χ(t− u)]µ∗n(du)

µ∗n(t) = expected number of individuals from the nth genera-
tion born before time t.

Here:

µ∗n(du) = 2nF ∗n(du)

where

F ∗n(du) =
n∑

k=0

n

k

qk(1− q)n−kF ∗n
T ∗ F ∗n

U ∗ F ∗k
G0

(du)
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BACK TO EXAMPLE

Approximation:

E[Q(t)] ≈ E[Z
χq

t ]

E[Zχ
t ]
→ 0.30
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CELL CYCLE DESYNCHRONIZATION

Cell cycle:

(www.knowledgerush.com)

Consider Q(t): fraction of cells in S phase. Asymptotics, period,
rate of convergence of Q(t).

Joint with Thomas “Ollie” MacDonald, math major, Trinity
University.
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THE MODEL

• random lifetime L = G1 + S + G2 + M , cdf F

• reproduction by splitting, ξ(dt) = 2δL(dt), µ(dt) = 2F (dt)

• Malthusian parameter: 2
∫ ∞

0
e−αtF (dt) = 1

Random characteristic counting cells in S phase:

χS(a) = I{G1 ≤ a ≤ G1 + S}
Random characteristic counting cells alive:

χ(a) = I{L > a}

As t →∞, Q(t) → cq

c
.
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EXPERIMENTAL DATA

(Chiorino, Metz, Tomasoni, Ubezio, J Theor Biol, 208, 2001)

Cells forced to start in S phase (synchronization). Percentage
of cells in S phase as a function of time:
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Our Q(t):

0

1

Whence the initial linear part?
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For small t, the ancestor dominates:

E[Zχ
t ] = E[χ(t)] +

∫ t

0
E[Zχ

t−u]µ(du) ≈ E[χ(t)]

Counting cells in S phase:

χS(a) = I{G1 ≤ a ≤ G1 + S}
Forced start in S phase: observe at time G1+US+t. Ancestor’s
contribution:

E[χS(t)] = P (G1 ≤ t + G1 + US ≤ G1 + S)

= P (S(1− U) ≥ t) ≈ 1− t

E[S]
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LOSS OF TELOMERES

Collaboration with Dr. Alison Bertuch, Baylor College of Medicine.

• Telomere: end of chromosome, shorten during replication.

• Length reaches critical point, cell division stops – senescence,
Hayflick limit.

• Aging, cancer, forensics.

(www.scinexx.de)

• Previous branching process models:

Arino, Kimmel, and Webb, J. Theor. Biol. 177 (1995)

O. and Kimmel, Math. Biosci. 1 (1999)
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• Saccharomyces cerevisiae: important model organism (and
SNPA).

(Wikipedia)

• A mother cell produces many daughter cells – general branch-
ing process.

• Telomeres shorten in both mother and daughter.

• At critical length, no further division.

• Individual cells also age – finite number of offspring indepen-
dently of telomere length (replicative lifespan).
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BRANCHING PROCESS MODEL

• Need multi-type branching process: type is telomere length.

• A mother can have N daughters, P (N = k), k = 0, 1, 2, ..

(O. and Kimmel: N ≡ ∞, polynomial population growth)

• Times between budding events L1, L2, ... i.i.d. with cdf F .

• pi,j(k): probability that kth daughter has telomere length j if
mother initially has telomere length i.

• Let 0 be critical length: p0,j(k) ≡ 0

• Number of cells at time t:

Ei[Z
χ
t ] =

i∑
j=0

∞∑
n=0

∞∑
k1,...kn=1

n∏
l=1

pij(kl)
∗nP (N ≥ kl)F

∗(k1+...+kn)(t)
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POPULATION GROWTH
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