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POPULATION DYNAMICS

Goal: to describe and analyze properties of populations of re-
producing individuals.

1. Deterministic methods (e.g., differential equations)

dx
“top down,” start on population level, pri flx(t))

no connection between individuals and population

only describe expected values, no extinction

easy to deal with dependencies, feedback, “nonlinearity”

2. Stochastic methods (e.g., branching processes)

“bottom up,” start on individual level, P(k children) = py

relate individual behavior to population behavior

expected values, variances, large deviations, extinction

difficult to deal with dependencies, feedback, “nonlinearity”



BRANCHING PROCESSES

1. Galton-Watson process, discrete time, synchronized gen-
erations

2. General branching process, continuous time, overlapping
generations
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GALTON-WATSON PROCESS

e Number of children X, random variable on {0,1,2, ...

e Size of nth generation:

anl
Zn=S X4, n=12.. (Zy=1)
k=1

e Growth rate: m", where m = E[X]

Zy,
e Convergence: — — W as n — oo.
m

}



GENERAL (CRUMP-MODE-JAGERS) BRANCHING
PROCESS

e Reproduction process, £: point process on [0, 00)

£(a) = /Oaé(dt) = number of children up to age a

e Mean reproduction process p(a) = FE[¢(a)], pu(dt) = E[(dt)]

e Growth rate: e, where Malthusian parameter o solves the
equation

plo) = [ ¢ u(dn =1

e Galton-Watson process: &(dt) = X d1(dt),

é(a):{o ifa<l1

X ifa>1
In this case,

/Ooo e “u(dt) =me =1

gives o = logm and e = m™".



RANDOM CHARACTERISTICS

e random characteristic x, stochastic process, x(a): contribu-
tion of an individual at age a

e x-counted population

th - Z X:z:(t - 7-:17)

zel

where

I =set of all individuals
T,=Dbirth time of individual x, age t — 7, at time ¢

Examples:

1. x(a) = Ip,(a) — indicator of being born, Z = number of
individuals born before ¢

2. x(a) = Ijp )(a) — indicator of being alive, Z = number of
individuals alive at time ¢



CONVERGENCE RESULT
Ast — oo,

e MZY W
where W is a random variable and

c= / Bl
In the limit, x enters only as a constant. Thus:
th ' 1

_,
Z* C2
Asymptotic stability, for example stable age distribution.




CELL POPULATIONS WITH QUIESCENCE
(0., Journal of Biological Dynamics, 2(4), 2008)

Cell cycle:
sl =D
N

Gy

(www.knowledgerush.com)
(G phase — growth and preparation for DNA synthesis
S (synthesis) phase — DNA replication
(G5 phase — growth and preparation for division
M (mitosis) phase — cell division

(G phase — quiescence, possible at restriction point



PDE MODEL

Arino, Sanchez, Webb (1997)
Dyson, Villella-Bressan, Webb (2002)

pl(a,t): density of proliferating cells
q(a,t): density of quiescent cells

fl?t? n ZZ = —(u(a) + o(a))p(a, ) + T(a)q(a, 1)
Z;Z + 32 = —o(a)p(a,t) — 7(a)q(a,t)

w: division rate
o, T: transition rates

Lots of conditions = asynchronous exponential growth, conver-
gence toward stable proportion of quiescent cells



BRANCHING PROCESS MODEL

Fraction 1/4 of quiescent cells at time ¢. As t — oo?



LIFETIMES AND GROWTH RATE

T U
} ——————— |
T U
7 T+U with prob 1 — ¢
| T+ Go+U with prob ¢

Binary splitting, no death: &(dt) = 20.(dt), p(dt) = 2F(dt).
Malthusian parameter given by

QF\L(OK) = 2(1 — Q)F\T—FU(O() + QQF\T—i-Go—FU(O‘) =1

Laplace transform: F(a) = /OOO e ' F(dt)
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CHARACTERISTICS AND ASYMPTOTICS

Quiescent cells:

1 if quiescent at age a
0 otherwise

vol@) = H{QN{T < 0, T+Gy > a}} = {
All cells:

1 if alive at age a

x(a)=I{L>a}={0

otherwise
Fraction of quiescent cells:

Xq
_ 4 Cq
= —

—q/ TMP(T <t < T+ Go)dt

c_/ “OUP(L > t)dt
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AN EXAMPLE
T,U, Gy independent I'(3,1)

Malthusian parameter:

2(1 —q) 29
Itaf " (d+a)P

q = 0.9 gives a ~ 0.08 and ¢,/c ~ 0.30 so

Q(t) - 030 ast— oo
How does Q(t) approach its limit?
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RENEWAL THEORY
For any general branching process:

E[Z)] / (ZX)]
with solution

Z/ X(t —w)]p™ (du)

" (t) = expected number of individuals from the nth genera-
tion born before time ¢.

Here:

p(du) = 2"F*" (du)

where

& n — *MN *N k
Pr) = 35 (1) 0 R
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BACK TO EXAMPLE

Approximation:

E(Z"]

0.30
Bz

E[Q(t)] ~

04
03F -~ \ - T
02}
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CELL CYCLE DESYNCHRONIZATION

Cell cycle:
sy =D
N

Gy

(www.knowledgerush.com)

Consider Q(t): fraction of cells in S phase. Asymptotics, period,
rate of convergence of Q(t).

Joint with Thomas “Ollie” MacDonald, math major, Trinity
University.
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THE MODEL

e random lifetime L = G+ S+ Go+ M, cdf F

e reproduction by splitting, {(dt) = 20.(dt), pu(dt) = 2F(dt)
e Malthusian parameter: 2/00O e “F(dt) =1

Random characteristic counting cells in S phase:

xs(a) = I1{G1 <a <Gy + S}

Random characteristic counting cells alive:

x(a) = I{L > a}
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EXPERIMENTAL DATA

(Chiorino, Metz, Tomasoni, Ubezio, J Theor Biol, 208, 2001)

Cells forced to start in S phase (synchronization). Percentage

of cells in S phase as a function of time:

100y
80 ,
60/
40/ .
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18



Our Q(1):

Whence the initial linear part?
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For small ¢, the ancestor dominates:

E|ZY) = EX(t)] + [ EZXJn(du) = E[x(1)

Counting cells in S phase:

xs(a) =1{G1 <a <Gy + 5}

Forced start in S phase: observe at time G1+US +t. Ancestor’s
contribution:

E[Xs(t)] :P(Gl St—l—Gl—l—USS G1+S)

:P(S(I—U)zt)zl—EFS]

0.2
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LOSS OF TELOMERES
Collaboration with Dr. Alison Bertuch, Baylor College of Medicine.
e Telomere: end of chromosome, shorten during replication.

e Length reaches critical point, cell division stops — senescence,
Hayflick limit.

e Aging, cancer, forensics.

(www.scinexx.de)

e Previous branching process models:
Arino, Kimmel, and Webb, J. Theor. Biol. 177 (1995)

O. and Kimmel, Math. Biosci. 1 (1999)
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e Saccharomyces cerevisiae: important model organism (and
SNPA).

(Wikipedia)

e A mother cell produces many daughter cells — general branch-
ing process.

e Telomeres shorten in both mother and daughter.
e At critical length, no further division.

e Individual cells also age — finite number of offspring indepen-
dently of telomere length (replicative lifespan).
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BRANCHING PROCESS MODEL
e Need multi-type branching process: type is telomere length.
e A mother can have N daughters, P(N = k),k=0,1,2, ..
(O. and Kimmel: N = oo, polynomial population growth)
e Times between budding events Ly, Lo, ... i.i.d. with cdf F.

e p; j(k): probability that kth daughter has telomere length j if
mother initially has telomere length .

e Let 0 be critical length: py (k) =0

e Number of cells at time ¢:

{

j=0n=0%k,,..k,=11=1
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POPULATION GROWTH
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