Counting process

Introduction

A counting process is a nonnegative, integer-valued,
increasing stochastic process. The most common use
of a counting process is to count the number of
occurrences of some event of interest as time goes by,
and the index set is therefore usually taken to be the
nonnegative real numbers [0, oo) (although the more
general index set R = (—o00, 00) is also commonly
used). Formally, a counting process {N(t),t > 0}
is then any nonnegative, integer-valued stochastic
process such that N(s) < N(¢) whenever s < ¢. For
the purpose of this article, we shall assume that the
count starts at 0 so that N(0) = 0 (this assumption
can be relaxed).

A sequence of random variables that arises natu-
rally in a counting process is the “sojourn” time”
T, between the kth and (k + 1)th event for k > O,
and the quantity N(¢) can be expressed in terms of
Ty by using the standard technique of “indicator
functions:” the indicator function /5 of an event A
equals 1 if the event occurs and O otherwise. Letting
Sy =Ty+ Ty + - - - Ty, the time of the kth event, it
holds that

N@) =) Iis=n ¢))
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and the number of events in a given time interval
(s, t] can be defined as N (s, t) := N(t) — N(s). Most
commonly, assumptions are made regarding the dis-
tribution of the sojourn times, both with respect to the
distribution of individual times and the dependence
structure between times. Depending on the assump-
tions, a counting process may be known under other
names and fit into other general classes of processes.
One such assumption is that the sojourn times are
independent with 7; following an exponential dis-
tribution with mean u; leading to a “pure birth
process,” which can be used to model a popu-
lation of reproducing individuals where an “event”
is the birth of a new individual and the popula-
tion size increases by one. This in turn is a special
case of a “birth and death process” (where
population size may also decrease) and is the only
case in which a counting process is a “Markov
process.” Another assumption is that the sojourn

times 77, T», ... are independent and identically dis-
tributed (i.i.d.) in which case the resulting process
is known as a “renewal process,” which is a
thoroughly studied and much applied type of pro-
cess. If, in addition, the 7, have an exponential
distribution with mean u (so that we have a pro-
cess that is both a pure birth process and a renewal
process), the result is a homogeneous “Poisson pro-
cess” with “rate” A:=1/u (the mean number
of events per time unit). Renewal processes and
the Poisson process are described in more detail
subsequently.

Renewal Processes

Recall that N (z) is the number of events up to time
t. A fundamental question is how N (¢) behaves as
¢t increases and one answer is provided by a sim-
ple application of the “Law of Large Numbers.”
With u = E[T;], the mean sojourn time, it can be
shown that

N(t) 1

t 1

as t — oo (the convergence holds “almost
surely,” that is, with probability 1). The expected
value m(t) = E[N(t)], is called the “renewal
function” and perhaps surprisingly, it is signif-
icantly more difficult to establish the asymptotic
behavior of m(#). However, the result that finally fol-
lows is equally as intuitive as the previous one:
m(t) 1
—_—

t 1

and thus, both N(¢) and m(¢) increase roughly as
ut as t increases. It is also worth noticing that
by (1), m(¢) can be given explicitly in terms of
the “convolution powers” of the distribution a
sojourn time:

o]

m(t) = Z F* (1)

k=0

where the convolution F* is the cumulative
distribution function (cdf) of S; (and F* is inter-
preted as a unit point mass at 0).

One particular complication in applications of
renewal processes is that observation of the process
often starts at some time when the process itself may
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2 Counting process

already have started. In other words, the distribution
of T is not necessarily the same as that of the
other 7. If observation starts at time #, there have
been an unknown number N(¢) of previous events,
the next event will be numbered N(¢) + 1, and
our first observation occurs in the random interval
[Tny, Tney+1)- The “excess lifetime” at time ¢
is defined as

W) = Tngs1 — 1

and is thus the time (previously denoted T7) to the
first event from the time observation starts (“W” for
“wait”). The distribution of W(¢) generally depends
on t and is thus not the same as that of the Tj;
in fact, it is only so if the 7; are exponentially
distributed. The following asymptotic result holds for
the distribution of W (¢):

1 X
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0

where F is the common cdf of the T} (some technical
restrictions on F are needed, for example, that it has
a density with respect to Lebesgue measure). The
limiting distribution in (2) can be used in applications
as the (approximate) distribution of 7). It may be
tempting to believe that E[W(¢)] must be smaller
than the E[T;] because time has already elapsed
since the previous event but this is not true; in
the other direction works the fact that an arbitrarily
chosen starting time is more likely to follow in an
interval that is longer than average (simply because
the longer the interval, the easier it is to “hit”). In
other words, the distribution of Ty (41—, Tn¢) 1S in
general not the same as that of the 7; (again, this is
only so in the exponential case). This phenomenon
is known as the “waiting time,” which will be
addressed below.

The Poisson Process

In a Poisson process with rate A, it is a standard
result that the number of events N(s, ) follows a

“Poisson distribution” with mean A(f — s) and that
N(s,t) and N(u,v) are independent for all disjoint
time intervals (s, #] and (u, v]. This consequence is
in fact equivalent to the aforementioned assumption
of exponential sojourn times and thus provides an
alternative characterization of the Poisson process. As
the Poisson process is a Markov process, it has the
memory-less property: at any time #, the time until
the next event follows an exponential distribution
with mean p regardless of when the most recent
event before ¢ occurred (and anything that happened
before it). In the Poisson process, the excess lifetime
W (t) thus has the same exponential distribution as
the 7} (and it is readily checked that this exponential
distribution arises in (2) above). Now note that at any
time ¢, the time since the previous event also follows
an exponential distribution with mean w. Thus, the
time between the previous and next event has mean
21, which seems to contradict the fact that the time
between any two consecutive events has mean u.
This is the waiting time paradox whose explanation
was given above; the interval in which we start does
not have the typical sojourn time distribution; in fact,
it was just argued that in the Poisson process it is on
average twice as long as the typical sojourn time.
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