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A general branching process model is suggested to describe cell cycle desynchronization. Cell cycle phase
times are modeled as random variables and a formula for the expected fraction of cells in S phase as a
function of time is established. The model is compared to data from the literature and is also compared
to previously suggested deterministic and stochastic models.
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1. Introduction

The cell cycle of a eukaryotic cell consists of four phases. In
brief, they are G1 where the cell grows, S where its DNA synthe-
sizes, G2 where it prepares for division, and M where it divides.
Due to variability in individual cell phase times, an initially syn-
chronous population will eventually lose synchronicity and the
percentages of cells in the difference phases settle in toward a sta-
ble phase distribution. Questions of interest to biologists and
mathematical modelers alike include how the stable distribution
relates to phase time parameters and how, and at what rate, the
phase percentages approach the stable distribution.

Some early work on stable distributions in cell kinetics was
done by [1,2,10–13]. In fact, some of the stable population results
that we prove below existed already in Macdonald’s papers with
mostly heuristic derivations. An important publication on the issue
is Chiorino et al. [3]. There, a deterministic model is developed and
fitted to data from various cell lines, obtained specifically for this
purpose. A system of partial differential equations is established
and investigated via an asymptotic approximation of the solution.
One noticeable feature is the oscillatory pattern in which cell phase

percentages approach the stable phase distribution, a pattern seen
in the data as well as in the solution to the model. The authors fo-
cus mainly on cells in S phase, starting by labeling cells in that
phase, in a cell population in stable exponential growth, and then
measuring the fraction of cells in S phase at regular time intervals.
By design, initially 100% of cells are in S phase and as time ad-
vances, the percentages oscillate to settle in toward a stable limit.
The model is fitted to the data and approximate relations between
phase time parameters on the one hand and the stable phase dis-
tribution together with convergence rate and periodicity on the
other are established. The data from Chiorino et al. was also used
in Milotti et al. [15] where a nice heuristic stochastic model was
suggested, based in part on Bronk et al. [1].

We propose a general branching process model. Thus, our ap-
proach is stochastic, putting us closer to the second of the papers
mentioned above. Our model more faithfully describes the biological
processes and incorporates sampling effects due to exponential
growth that are disregarded by Milotti et al. In the model, we de-
scribe phase times as random variables, consider a population that
reproduces by splitting, and keep track of the number of cells that
are in S phase at any given time, as well as the total number of cells.
For ease of reading, in the next section we give a brief description of
the general branching process (or Crump-Mode-Jagers process). For
a comprehensive treatment, see Jagers and Nerman [6].
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2. General branching processes

The fundamental mathematical object in a general branching
process is the reproduction process, n. This is a stochastic point pro-
cess on ½0;1Þ that describes how an individual reproduces, thus
nðaÞ ¼

R a
0 nðdtÞ gives the number of children up to age a. Each new-

born individual starts reproducing according to a copy of n, inde-
pendently of other individuals. In cell populations where
reproduction is by division, n is characterized by two random vari-
ables: the lifetime L and the number of offspring X. Specifically

nðdtÞ ¼ XdLðdtÞ

where dL is the unit point mass at L (L and X may be dependent). The
expression for n simply means that the cell lives for a time L, then
produces X daughter cells. If there is no death, X � 2.

To capture the growth rate of the process, we consider the mean
reproduction process, lðdtÞ ¼ E½nðdtÞ�, which thus defines a mea-
sure. Of particular interest is its Laplace transform

blðrÞ ¼ Z 1

0
e�rtlðdtÞ

The growth rate is now determined by the Malthusian parameter
which is the number a that satisfies blðaÞ ¼ 1. If a > 0, the process
is said to be supercritical which means that the population has a
chance of avoiding extinction and that the expected population size
grows asymptotically as eat . We deal with cell populations with no
death so our process is supercritical and the equation defining a
becomes

2bF ðaÞ ¼ 1 ð2:1Þ

where F is the distribution function of L and bFðaÞ ¼ R10 e�atFðdtÞ. If
there is death, the number 2 is replaced by the mean number of sur-
viving daughter cells.

To count, or measure, the population, random characteristics are
used. A random characteristic is a real valued stochastic or deter-
ministic process v, where vðaÞ gives the contribution of an individ-
ual of age a. We assume that v is nonnegative and vanishing for
negative a (no individual contributes before her birth). In a general
branching process, individuals are identified by descent; the ances-
tor is denoted by 0, the individual x ¼ ðx1; . . . ; xnÞ belongs to the nth
generation and is the xnth child of the xn�1th child of . . . of the x1th
child of the ancestor. This gives the population space

I ¼
[1
n¼0

Nn;

that is, the set of all conceivable individuals (whether an individual
is actually born depends on the reproduction process of its mother).
Note that this construction assumes that we start the population
from one individual, the ancestor, an assumption we make through-
out this paper.

Now let the v-value pertaining to the individual x be denoted by
vx and denote the birth time of the individual x by sx. The v-
counted population, Zv

t is defined as

Zv
t ¼

X
x2I

vxðt � sxÞ;

the sum of the contributions of all individuals (at time t the individ-
ual x is of age t � sx). The simplest example of a random character-
istic is the indicator function vðtÞ ¼ Ift P 0g, which equals zero
before the individual is born and one thereafter, in which case Zv

t

is the number of individuals born up to time t.
We next state without conditions the main convergence results

that we need in this paper. The results can be found in Jagers and
Nerman [6] and for convenience, we also state them with all their
conditions in Appendix A. Let

E½bvðaÞ� ¼ Z 1

0
e�atE½vðtÞ�dt

and

b ¼ 2
Z 1

0
te�atFLðdtÞ ð2:2Þ

Then

E½e�atZv
t � !

E½bvðaÞ�
b

ð2:3Þ

as t !1, and also

e�atZv
t !

E½bvðaÞ�
b

W ð2:4Þ

almost surely as t !1, where W is a random variable with mean 1.
In the present paper, our main use of the theorem is to establish
asymptotic proportions of cell with various properties (such as
being in S phase). The main idea is to consider a randomly sampled
cell at time t (sampled from all cells that existed until that time,
alive or dead) and let vA be a characteristic that counts cells that
are alive at t and have some property A. Let v be a characteristic that
counts cells that are alive. At time t, the conditional probability that
the randomly sampled cell has property A is then

PðAjFtÞ ¼
ZvA

t

Zv
t

where Ft is the r-algebra generated by the reproduction processes
of all individuals born up to time t. By (2.4)

PðAjFtÞ ¼
e�atZvA

t

e�atZv
t

! E½bvAðaÞ�
E½bvðaÞ�

as t !1. One complication is that the population might go extinct,
in which case the probability PðAjFtÞ is not always well-defined. As
we deal with cell populations that do not go extinct, we shall not
delve deeper into the issue [which also involves possible degener-
acy of W associated with the so-called x log x condition, a fascinat-
ing topic in its own right, see Jagers [5], Lyons et al. [9], Olofsson
[16,18]]. The limit of PðAjFtÞ is called the stable population mea-
sure, often denoted ePðAÞ. Thus, eP takes into account two sources
of randomness: the population dynamics and the sampling, the lat-
ter being affected by the exponential growth. As the cell popula-
tions in Chiorino et al. [3] are in stable exponential growth, we
use the probability measure eP in our calculations.

3. The branching process model: theoretical results

In this section we describe the branching process model and
state some theoretical results, leading into the data analysis of
the next section where explicit assumptions are made regarding
phase time parameters.

The data in Chiorino et al.[3] are obtained by flow cytometry
where the last two phases of the cell cycle, G2 and M, are not dis-
tinguishable. Therefore, we let the cell cycle time be denoted by L
where L is the sum of the times of three cell cycle phases:
L ¼ G1 þ Sþ G2M, in the obvious notation. Assume that the lengths
G1; S; and G2M of the phases are independent continuous random
variables (although many of the results are easily rephrased in
the case of dependent cell cycle times, using joint distributions
rather than products of marginals) and use the notation FX and fX

for the cdf and pdf of a random variable X. The Malthusian param-
eter a is determined by the relation

2bF LðaÞ ¼ 1

and to count cells in S phase we use the random characteristic

vSðaÞ ¼ IfG1 6 a 6 G1 þ Sg ð3:1Þ
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which is 1 if the cell is in S phase at age a and 0 otherwise so that ZvS
t

gives the number of cells in S phase at time t. The expected value
that is needed to compute the limit in (2.4) is

E½vSðaÞ� ¼ PðG1 6 a 6 G1 þ SÞ ð3:2Þ

which we can compute once we have explicit distributional
assumptions about G1 and S. The total number of cells alive is
counted by the characteristic

vLðaÞ ¼ IfL P ag

which has expected value

E½vLðaÞ� ¼ PðL P aÞ

Thus, the fraction of cells in S phase at time t is given by

QðtÞ ¼ ZvS
t

ZvL
t

and our first result expresses the limit of QðtÞ as t !1 in terms of
the cdf of S, the pdf of G1, and a.

Proposition 3.1. Let QðtÞ be as above. Then, with probability 1,

QðtÞ ! 2a
Z 1

0

Z t

0
e�atð1� FSðt � uÞÞfG1 ðuÞdudt

as t !1.

Proof. Appendix A. h

We are interested not only in the limit of QðtÞ but also in how
the limit is approached. From now on, we shall focus on the ex-
pected value of QðtÞ and use the approximation

E½QðtÞ� ¼ E
Zvs

t

ZvL
t

� �
� E½Zvs

t �
E½ZvL

t �
ð3:3Þ

which can be viewed as a 0th order Taylor approximation where we
first consider the function f ðx; yÞ ¼ x=y expanded about a point
ða; bÞ, f ðx; yÞ � a=b, then let x ¼ Zvs

t ; y ¼ ZvL
t ; a ¼ E½Zvs

t � and b ¼
E½ZvL

t � and take expected values. We can now use results from Jagers
and Nerman [6] to deal directly with expressions of the type E½Zv

t �
for t P 0. A brief summary is presented in Appendix B.

As we observe a population where the ancestor starts in S
phase, we are in fact observing a time-shifted branching process.
Our time zero of observation is really time s in the branching pro-
cess where s ¼ G1 þ T; T being a random variable that gives the
position of the ancestor within S phase. Thus, at time t we are in
fact observing Qðt þ sÞ, from now on denoted by QsðtÞ, where we
wish to compute

E½QsðtÞ� �
E½ZvS

sþt�
E½ZvL

sþt�

This quantity has the same limit as QðtÞ. To see why, let c denote the
almost surely constant limit of QðtÞ and note that

QsðtÞ ¼
ZvS

tþs

ZvL
tþs
¼ e�aðtþsÞZvS

tþs

e�aðtþsÞZvL
tþs
! c

almost surely as t !1, by (2.4). Since jQsðtÞj 6 1 for all t, domi-
nated convergence yields E½QsðtÞ� ! c as t !1. Also, the limit of
the approximating ratio E½ZvS

sþt�=E½ZvL
sþt� equals c since

E½ZvS
sþt �

E½ZvL
sþt �
¼ E½e�aðtþsÞZvS

sþt�
E½e�aðtþsÞZvL

sþt�
! c

by (2.3).
Before we start dealing with E½QsðtÞ�, let us first state the pdf of

the age of the ancestor. As the cell populations in Chiorino et al.
(2001) can be considered in stable exponential growth, we can

get the distribution of s through the asymptotic theory of branch-
ing processes, expressed in terms of the distributions of the cell cy-
cle phases. The following proposition is essentially formula (23) in
[12].

Proposition 3.2. Consider a cell population in stable exponential
growth and let s be the age of a randomly sampled cell that is in S
phase. Then s has pdf

fsðtÞ ¼ ce�at
Z t

0
ð1� FSðt � uÞÞfG1 ðuÞdu

where c is a normalizing constant.

Proof. Appendix A. h

As an example, consider the simple case where both G1 and S
have exponential distributions with mean 1. Then

fsðtÞ ¼ ce�at
Z t

0
e�ðt�uÞe�udu

¼ cte�ð1þaÞt

and since fs must integrate to 1, we get c ¼ ð1þ aÞ2 and we recog-
nize that s has a Cð2;1þ aÞ distribution (more about this distribu-
tion in the next section). Note that although the distribution of the
third phase G2M does not appear explicitly, it has an impact on the
value of a by (2.1).

To deal with E½QsðtÞ�, we single out the ancestor and decompose
the v-counted population by adding the contribution of the ancestor
and the contributions of the populations stemming from the off-
spring of the ancestor, a common trick in branching process analysis,
see Jagers and Nerman [6] for details. For any characteristic v,

Zv
t ¼ vðtÞ þ Zv

t�Lð1Þ þ Zv
t�Lð2Þ

where L is the lifetime of the ancestor and Zv
t�Lð1Þ and Zv

t�Lð2Þ denote
the two independent branching processes initiated by the children
of the ancestor. Now add the ancestor’s age s to t to obtain the ex-
pected value

E½Zv
sþt� ¼ E½vðsþ tÞ� þ 2E½Zv

sþt�L�
¼ E½vðsþ tÞ� þ 2E½Zv

t�R� ð3:4Þ

were R ¼ L� s, the remaining lifetime of the ancestor at time s. Let
us deal with the two terms in (3.4) separately, starting with the first
term for the characteristic vS. By (3.2),

E½vSðsþ tÞ� ¼ PðG1 6 sþ t 6 G1 þ SÞ
¼ PðG1 6 G1 þ T þ t 6 G1 þ SÞ
¼ PðS� T P tÞ

Hence, if we let X ¼ S� T , the remaining time the ancestor spends
in S phase after observation time 0, the contribution from the ances-
tor to the time-shifted population is

E½vSðsþ tÞ� ¼ PðX P tÞ ð3:5Þ

where we can express the distribution of X by again invoking
asymptotic results from general branching process theory. Note in
particular that at the initial observation time t ¼ 0 we have
E½vSðsÞ� ¼ 1 (and even vSðsÞ � 1), thus forcing the ancestor to start
in S phase. We give the distribution of X next. This distribution is
also given in

Proposition 3.3. Consider a cell population in stable exponential
growth and let X be the remaining time a cell that is in S phase spends
in that phase. Then X has pdf

fXðxÞ ¼ c
d
dx

Z 1

0

Z t

0
e�atFSðxþ t � uÞfG1 ðuÞdudt

where c is a normalizing constant.
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Note 1. If fS is continuous or if fSðxþ t � uÞ 6 gðt; uÞ for some
function g withZ 1

0

Z t

0
e�atgðt;uÞfG1 ðuÞdudt <1

then differentiation and integration can be interchanged so that

fXðxÞ ¼ c
Z 1

0

Z t

0
e�at fSðxþ t � uÞfG1 ðuÞdudt

a form which is recognized as formula (24) in [12].

Proof. Appendix A. h

We will use the gamma distribution in our applications, which
means that we get the second expression for fXðxÞ. Note that if S has
an exponential distribution, S � expðkÞ for some rate k, then
fSðsÞ ¼ ke�ks and we get

fXðxÞ ¼ e�kxck
Z 1

0

Z t

0
e�ate�kðt�uÞfG1 ðuÞdudt

and as the argument x only appears in the factor e�kx we conclude
that X � expðkÞ as well, regardless of the distribution of G1. Consid-
ering the memoryless property of the exponential distribution and
the fact that we condition on the cell being in S phase, this observa-
tion should come as no surprise.

Next, let us deal with vL. For that purpose, let R ¼ X þ G2M, the
remaining lifetime of a cell in S phase. Thus, the pdf of R is the
convolution

fRðrÞ ¼
Z r

0
fXðr � uÞfG2MðuÞdu ð3:6Þ

where fX is given in Proposition 3.3. Let T and X be as above and note
that L ¼ G1 þ Sþ G2M and s ¼ G1 þ T which gives

E½vLðsþ tÞ� ¼ PðG1 þ Sþ G2M P G1 þ T þ tÞ
¼ PðR P tÞ

For the second term in (3.4), note that, for any characteristic v,

E½Zv
t�R� ¼

Z t

0
E½Zv

t�rjR ¼ r�fRðrÞdr

where fR is the pdf of R given in (3.6). Note that, conditioned on
R ¼ r, the conditional expectation E½Zv

t�rjR ¼ r� equals E½Zv
t�r� since

the process starts over and its future is (conditionally) independent
of R. Hence, we can rewrite (3.4) as

E½Zv
sþt � ¼ E½vðsþ tÞ� þ 2

Z t

0
E½Zv

t�r�fRðrÞdr ð3:7Þ

which gives

E½QsðtÞ� �
PðX P tÞ þ 2

R t
0 E½ZvS

t�r �fRðrÞdr

PðR P tÞ þ 2
R t

0 E½ZvL
t�r�fRðrÞdr

ð3:8Þ

where PðX P tÞ and PðR P tÞ are computed by invoking Proposition
3.3 and (3.6), respectively, E½Zv

t�r� can be computed for vS and vL by
the methods outlined in Appendix B, and fRðrÞ is given in (3.6). Also
note that E½QsðtÞ� and its approximating ratio agree at t ¼ 0, where
they are both equal to 1, and in the limit as t !1.

Let us finally point out that there is an alternative to considering
the remaining time X the ancestor spends in S phase, namely, to
consider this time as a fraction of the total time in S phase,
X ¼ US, where U is a random variable with support [0,1]. This is
the approach taken by Milotti et al. [15] where it is assumed that
U is uniform on [0, 1]. Our last proposition states the cdf of
U ¼ X=S. It is very similar to the ‘‘elapsed proportion of a phase”
in [11].

Proposition 3.4. Consider a cell population in stable exponential
growth, let X and S be as above and let U ¼ X=S. The cdf of U is

FðuÞ ¼ c
Z 1

0

Z t

0
e�at FS

t � v
1� u

� �
� FSðt � vÞ

� �
fG1 ðvÞdvdt

for 0 6 u 6 1 where c is a normalizing constant.

Proof. Appendix A. h

We shall not further utilize this approach, but let us point out that
it is clear from the complicated expression of FðuÞ that U will typi-
cally not be uniform. As an example, consider the situation where
G1; S; and G2M have exponential distributions with mean 1. Simple
calculations show that a ¼ 21=3 � 1 � 0:26 and the cdf of U is

FðuÞ ¼ 0:26u
0:33� 0:07u

; 0 6 u 6 1

where all numbers are rounded to 2 decimals. Clearly U is not uni-
form, although it is fairly close, see Fig. 1. The data in Chiorino et al.
[3] exhibit an initial linear decline in the fraction of cells in S phase
and Milotti et al. [15] attribute this fact to cells being uniformly
positioned within S phase but as we have seen, this is likely not
true. An initial linear decline can however be explained without
invoking the uniform distribution. An intuitive explanation is that,
early on, the population is dominated by the contribution of the
ancestor and by (3.5), this contribution equals PðX P tÞ. For many
distributions, the survival function PðX P tÞ is approximately linear
in the beginning. For example, in the simple case when S � expðkÞ,
we saw that X � expðkÞ and hence

E½QsðtÞ� � PðX P tÞ ¼ e�kt � 1� kt

for small kt. We will elaborate further on this observation in
Section 4.

4. The branching process model: data analysis

We now assume that the cell cycle times G1; S, and G2M have gam-
ma distributions: G1 � Cða1; b1Þ; S � Cða2; b2Þ, and G2M � Cða3; b3Þ.
The gamma distribution is a flexible two-parameter family that is
commonly used to model lifetimes [Oprea and Kepler [20], Larsson

Fig. 1. Cdf of U (solid) and of a uniform distribution (dashed).
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et al. [7]]. Specifically, if the parameters are a and b, the probability
density function is

f ðtÞ ¼ e�btba ta�1

CðaÞ ; t P 0

where CðaÞ is the gamma function, the mean is a=b, and the vari-
ance is a=b2. The Malthusian parameter is given by solving the
equation 2bF LðaÞ ¼ 1. By independence we get

bF LðaÞ ¼ bF G1 ðaÞbF SðaÞbF G2MðaÞ

The Laplace transform for the Cða; bÞ distribution is

bF ðaÞ ¼ Z 1

0
e�at f ðtÞdt ¼ ba

ðaþ bÞa

and hence a is the solution to the equation

2ba1
1 ba2

2 ba3
3

ðaþ b1Þa1 ðaþ b2Þa2 ðaþ b3Þa3
¼ 1 ð4:1Þ

Further on, for our computations we need not only the Laplace
transform but the distribution of the total cell cycle time
L ¼ G1 þ Sþ G2M. The phase times have gamma distributions but
unless all the bj are equal, L does not have a gamma distribution.
It is possible to express its pdf in closed form as an infinite series
[Moschopoulos [14]] but in order to simplify the computations,
we approximate the distribution of L by a gamma distribution. To
match the mean and variance of the sum G1 þ Sþ G2M, this gamma
distribution must have parameters aL and bL that satisfy

E½L� ¼ aL

bL
¼ a1

b1
þ a2

b2
þ a3

b3

and

Var½L� ¼ aL

b2
L

¼ a1

b2
1

þ a2

b2
2

þ a3

b2
3

With our gamma approximation, a is instead the solution to the
equation

2baL
L

ðaþ bLÞaL
¼ 1

which gives

a ¼ bLð21=aL � 1Þ
For one example, let us use a data set from the cell line IGROV1
(ovarian carcinoma) where the estimated parameter values are

a1 ¼ 4; b1 ¼ 0:44; a2 ¼ 100; b2 ¼ 11:5; a3 ¼ 100;
b3 ¼ 32:2

[Lupi et al. [8] and Paolo Ubezio (personal communication)] which
gives aL ¼ 20:2; bL ¼ 0:97, and a ¼ 0:034. Inserting this value of a
and the aj and bj into (4.1) gives the result 0.9997, close enough to 1
to deem our approximation reasonable. It is also easy to verify the prac-
tical validity of the approximation by comparing simulated data sets.

Fig. 2 shows QðtÞ for the IGROV1 parameters given above and
for t from 0 to 60 h. The limit of QðtÞ by Proposition 3.1 equals
0.38 (dashed line) in agreement with the value obtained by Chiori-
no et al. Note the oscillatory pattern which is typical for quantities
relating to the cell cycle and shows up in data as well as in models,
see for example Bronk et al.[1], Macdonald [10], Jagers [5], Chiorino
et al. [3], Milotti et al. [15], and Olofsson et al. [17]. For details on
how to compute QðtÞ, see Appendix B.

In the computation we started at time t ¼ 0 which is why the
graph in Fig. 2 starts at Qð0Þ ¼ 0 (the initial cell starts in G1 phase).
Recall that the data in Chiorino et al. has all cells starting in S phase
so we need to consider E½Q sðtÞ� which is computed according to
(3.8). Fig. 3 shows E½QsðtÞ� for t from 0 to 60 h (solid line) using
the IGROV1 parameter values from above. The figure also displays

data from Chiorino et al. [3] of S phase fractions in an IGROV1 cell
line. We have not done any parameter estimation or fitting and it is
remarkable how well our model describes the data.

Another quantity of interest is the period between consecutive
maxima in the desynchronization curve. As our expression for
E½QðtÞ� does not have a simple analytic form, we cannot directly
establish an expression for the period. However, we can offer the
following argument. If cell cycle times were deterministic, the per-
iod would equal the cell cycle time. In reality, cell cycle times are
random and one might guess that the period instead equals the ex-
pected cell cycle time. However, this is not the case because of ef-
fects from the exponential growth. Recall the probability measureeP from Section 2; it is with respect to this measure we need to
compute the expected cell cycle time. It turns out that this ex-
pected value is the number b defined in (2.2) which is thus a rea-
sonable candidate for the period. In our model where the lifetime L
has a Cða; bÞ distribution we can find b explicitly as

b ¼ 2
Z 1

0
te�ate�btba ta�1

CðaÞdt

¼ a

b21=a ¼
m

21=a

Fig. 2. The fraction of cells in S phase converging to 0.38.

Fig. 3. The fraction of cells in S phase–model and data.
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where m ¼ E½L� ¼ a=b and we recall a ¼ bð21=a � 1Þ. Chiorino et al.
[3] denotes the period by T and gives the approximation

T � m

1þ log 2ðr=mÞ2

¼ m

1þ log 2
a

since r=m ¼ 1=
ffiffiffi
a
p

in the Cða; bÞ distribution. Now note the first-or-
der Taylor approximation

2x � 1þ x log 2

about x ¼ 0 to conclude that b � T unless a is very small. In other
words, the approximation in Chiorino et al. is good for the gamma
distribution unless the coefficient of variation r=m ¼ 1=

ffiffiffi
a
p

is large.
Calculations indicate that the error is negligible for any realistic val-
ues of a, an observation that provides a nice agreement between our
branching process model and the deterministic model of Chiorino
et al.

Note that the period is always shorter than the mean cell cycle
time which makes intuitive sense because at the time of sampling,
ancestral lines with many reproduction events are overrepre-
sented, a typical effect of the sampling bias that arises from expo-
nential growth. In contrast, Milotti et al. [15] present a formula
suggesting instead that the period is longer than the mean cell cy-
cle time. Their formula is obtained through analysis of the spectral
density of the desynchronization curves but as we have already
pointed out, they explicitly disregard exponential growth and
hence also the sampling bias that arises from it.

5. Discussion

We have proposed a general branching process model to de-
scribe the fraction of cells in S phase in an exponentially growing
cell population. The lengths of the cell cycle phases are modeled
by gamma distributions whose parameters are taken from previ-
ously published data. Given these parameters, we can compute
the asymptotic stable fraction of cells in S phase and also investi-
gate how this limit is approached by computing the expected frac-
tion of cells in S phase for any time t. Our model gives very good
agreement with published data, showing that the branching pro-
cess model is indeed a realistic description of how such cell popu-
lations evolve.

Our curve shows the typical oscillatory pattern found in the
data. It is also noteworthy how the initial ‘‘linear” phase arises
automatically and, as pointed out in the previous section, is not
really linear but an artifact of the distribution of the remaining
time in S phase, X (whose distribution is given in Proposition
3.3). Milotti et al. [15] uses an explicit linear form for the initial
time period followed by a shifted damped oscillation, which is
why their model gives a sharp edge where the linear part ends
and the oscillation begins. In contrast, our curve is smooth which
gives a better description of the data. It should also be noted that
our description of the initial time shift as random rather than con-
stant is more accurate. Indeed, the integration in (3.8) affects both
period and amplitude which is why the graphs in Figs. 2 and 3 are
not merely shifted versions of one another with an initial linear
part added.

Our purpose was to develop a model that could accurately pre-
dict data from desynchronization experiments such as those of
Chiorino et al. [3]. A natural continuation for future research would
be to develop estimation and curve fitting procedures based on our
model and applied to desynchronization data sets. It would also be
of interest to investigate the accuracy of the approximation in (3.3)
which might involve continuous-time versions of the results in
Olofsson and Shaw [19].

Acknowledgments

The authors thank Paolo Ubezio at the Mario Negri Institute for
Pharmacological Research in Milano for generously sharing and pa-
tiently explaining data sets, and Mark Embree and Jeff Hokanson at
Rice University for invaluable help with numerical integration. We
also thank an anonymous referee for alerting us to the publications
by P.D.M. Macdonald.

Appendix A

In this section we provide proofs of Propositions 3.1, 3.2–3.4.
The proofs are based on Theorems 3.4 and 5.10 from Jagers and
Nerman [6] and for the reader’s convenience, we restate them here,
together with a result for the total population size Yt that follows
from Lemma 5.2.1 in Jagers [5].

Theorem 5.1 (Jagers and Nerman [6]). Suppose that the mean
reproduction process lðdtÞ is nonlattice (cannot be supported by any
lattice fa;2a;3a; . . .g), and let a > 0 be the solution to the equationblðaÞ ¼ 1, define b ¼

R1
0 te�atlðdtÞ, and let v be a random character-

istic. Assume the following:

(i) lð0Þ < 1 and lðtÞ <1 for all t P 0
(ii) b <1

(iii) blðrÞ <1 for some r < a

(iv) E sup
a

e�aavðaÞ
� �

<1

(v)
P1

k¼0supk6a6kþ1e�aaE½vðaÞ� <1

Then

E½e�atZv
t � !

E½bvðaÞ�
b

as t !1. Next, let Yt be the total population size (all individuals born,
dead or alive) at time t. Then Yt <1 almost surely for all t P 0 and

e�atZv
t !

E½bvðaÞ�
b

W

almost surely on the set of nonextinction fYt !1g as t !1, where W
is a random variable with mean 1. Further,

Zv
t

Yt
! E½bvðaÞ�

almost surely on the set of nonextinction fYt !1g as t !1.

It follows immediately that if v1 and v2 are two random charac-
teristics satisfying the conditions of the theorem, we get

E½Zv1
t �

E½Zv2
t �
! E½bv1ðaÞ�

E½bv2ðaÞ�

as t !1, and also

Zv1
t

Zv2
t

! E½bv1ðaÞ�
E½bv2ðaÞ�

almost surely on the set of nonextinction as t !1.
Proof of Proposition 3.1. Recalling that we have

lðdtÞ ¼ 2FLðdtÞ ¼ 2f LðtÞdt

it is easily seen that (i)–(iii) hold if L has finite mean (and recall that
we use the gamma distribution for the data analysis). Moreover, the
characteristic counting all cells is

vLðaÞ ¼ IfL > ag

102 P. Olofsson, T.O. McDonald / Mathematical Biosciences 223 (2010) 97–104



Author's personal copy

which implies that vLðaÞ 6 1, and (iii) and (iv) follow immediately.
Similarly, (iii) and (iv) hold for the characteristic vS. Use (3.2) and
condition on G1 to obtain

E½bvSðaÞ� ¼
Z 1

0
e�atPðG1 6 t 6 G1 þ SÞdt

¼
Z 1

0
e�at

Z t

0
Pðu 6 t 6 uþ SÞfG1 ðuÞdudt

¼
Z 1

0

Z t

0
e�atð1� FSðt � uÞÞfG1 ðuÞdudt

and, invoking integration by parts,

E½bvLðaÞ� ¼
Z 1

0
e�atð1� FLðtÞÞdt

¼ �1
a

e�atð1� FLðtÞÞ
� �1

0
� 1

a

Z 1

0
e�at fLðtÞdt ¼ 1

2a

sinceZ 1

0
e�atfLðtÞdt ¼ 1

2

by the definition of a, and Proposition 3.1 follows.
Proof of Proposition 3.2. As previously, let vSðsÞ ¼ IfG1 6 s 6

G1 þ Sg, the indicator that the cell is in S phase at age s. Next, let

vaðsÞ ¼ vSðsÞIfs 6 ag

the indicator that the cell is in S phase and younger than a at age s.
The conditional probability that a randomly sampled cell is younger
than a given that it is in S phase at time t is then

Pðs 6 ajS phase at time tÞ ¼ Zva
t

ZvS
t

which has limit

lim
t!1

Pðs 6 ajS phase at time tÞ ¼ E½bvaðaÞ�
E½bvSðaÞ�

as t !1. The denominator is the reciprocal of the constant c and is
given in the proof of Proposition 3.1 above. The numerator equals

E½bvaðaÞ� ¼
Z a

0

Z t

0
e�atð1� FSðt � uÞÞfG1 ðuÞdudt

and Proposition 3.2 follows.
Proof of Proposition 3.3. This proof goes along the same line as

the previous proofs, the only difference being that we now need
to consider the characteristic

vxðsÞ ¼ IfG1 6 s 6 G1 þ S 6 sþ xg

which equals 1 if the cell is in S phase at age s and remains there for
at most x more time units. At time t, we have the conditional
probability

PðX 6 xjS phase at time tÞ ¼ Zvx
t

ZvS
t

and for its limit as t !1, we let c ¼ 1=E½bvSðaÞ�, given above.
Further,

E½bvxðaÞ� ¼
Z 1

0
e�at

Z t

0
PðS 6 t þ x� uÞfG1 ðuÞdudt

and Proposition 3.3 follows. To address the note after the proposi-
tion, differentiation under the integral sign is allowed if fS is contin-
uous, by Leibniz integral rule, or if there is a function g such that
fSðxþ t � uÞ 6 gðt;uÞ andZ 1

0

Z t

0
e�atgðt;uÞfG1 ðuÞdudt <1

by Theorem (2.27) in Folland [4].

Proof of Proposition 3.4. The characteristic we now use is

vuðtÞ ¼ IfG1 6 t 6 G1 þ S;G1 þ S� t 6 uSg

which has expected value

E½vuðtÞ� ¼ P G1 6 t 6 G1 þ S; S 6
t � G1

1� u

� �

and as the proof follows the pattern of the previous proofs, we leave
out the details.

Appendix B

In Section 4, we used the approximation

E
ZvS

t

ZvL
t

� �
� E½ZvS

t �
E½ZvL

t �

where E½ZvS
t � and E½ZvL

t � were computed numerically. To do so, stan-
dard results from renewal theory yield

E½Zv
t � ¼ E½v� � mðtÞ ¼

Z t

0
E½vðt � uÞ�mðduÞ

where m is the renewal measure

mðduÞ ¼
X1
n¼0

l�nðduÞ

l�n being the n-fold convolution of l (where l�0 by definition
equals d0, the unit point mass at 0). If lð0Þ < 1 and lðtÞ <1 for
all t P 0, it is known that mðtÞ <1 for all t P 0, see Lemma 5.2.1
in Jagers [5]. In our cell population reproduction lðduÞ ¼ 2FðduÞ
so that

l�nðduÞ ¼ 2nF�nðduÞ

The expression is intuitively reasonable. There are 2n individuals in
the nth generation and F�n is the distribution function of the sum of
n independent lifetimes. Hence, an individual in the nth generation
is born before time t with probability F�nðtÞ, so the expected number
of individuals from the nth generation that are born before t equals
2nF�nðtÞ. Summing over n gives the expected number of individuals
born before time t which is indeed the interpretation of the renewal
measure m.

With our assumption that L � Cða; bÞ, we get, by additivity of
the gamma distribution,

l�nðduÞ ¼ 2nf �nðuÞdu ¼ 2ne�btbna una�1

CðnaÞdu

and we compute expressions of the type

E½Zv
t � ¼ E½vðtÞ� þ

X1
n¼1

2n
Z t

0
E½vðt � uÞ�f �nðuÞdu

where E½vðtÞ� is the term for n ¼ 0. The functions that are to be inte-
grated are E½vSðtÞ� and E½vLðtÞ�. By (3.2) we get

E½vSðtÞ� ¼ PðG1 6 t 6 G1 þ SÞ

¼
Z t

0
PðG1 6 t 6 G1 þ SjG1 ¼ vÞfG1 ðvÞdv

¼
Z t

0
PðS > t � vÞfG1 ðvÞdv

and

E½vLðtÞ� ¼ PðL > tÞ

We can now compute E½ZvS
t � and E½ZvL

t � for any t.
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