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a b s t r a c t

A branching process model of a bacterial population with initial lag phase is developed. Approximations
are established in order to facilitate parameter estimation. The validity of approximations and estimation
procedures is tested with simulated data.
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1. Introduction

When a bacterium is inoculated into a new environment it typ-
ically needs time to adjust before it can start reproducing. This
time is referred to as the lag phase and it is succeeded by the expo-
nential growth phase (or ‘‘log phase’’). Accurate mathematical mod-
eling and statistical estimation of the lag phase is of great
importance in the field of food microbiology and many papers have
been devoted to this task. For an overview, see Swinnen et al. [11].
The definition of lag phase varies in the literature but its practical
definition seems to be simply ‘‘the time until the population is in
exponential growth.’’ An older definition is ‘‘the time for the initial
population to increase twofold’’ from Buchanan and Solberg [5]. A
very simple definition is to denote the logarithm of the number of
individuals at time t by y(t) and lag phase by k, and introduce the
biphasic function

yðtÞ ¼
0 if t 6 s
at � as if t P s

�
ð1:1Þ

where a is the specific growth rate of the population in the sense
that, asymptotically, the population grows proportionally to eat as
t ?1 (rather, this is how the population would grow if it could sus-
tain exponential growth indefinitely). This definition is overly sim-
plistic as it neglects the fact that there is also a noticeable period
between the end of lag phase and the beginning of exponential
phase (strictly speaking, exponential growth is an asymptotic
phenomenon).

A more sophisticated mathematical definition was suggested by
Buchanan and Cygnarowicz [4], namely

k ¼minft P 0 : y000ðtÞ ¼ 0g

with the interpretation is that the change in growth rate is maximal
at the time this third derivative equals 0. Another definition was
suggested by Kutalik et al. [10], namely,

k ¼ lim
t!1

t � yðtÞ � yð0Þ
a

� �
ð1:2Þ

This last definition seems to be the most common and is the one
that is used in several papers by Baranyi and collaborators [2,3],
one of the leading research groups in mathematical modeling of
bacterial lag. In both definitions, ‘‘number of individuals’’ should
be replaced by ‘‘expected number of individuals’’ if the model is sto-
chastic rather than deterministic.

Our approach is to model the bacterial population as a branch-
ing process in which we consider the individual lag, s, which is the
time a bacterium spends in adjustment to the new environment
before it starts its normal life cycle.

2. Branching processes

Consider a population started from one bacterium at time 0.
This bacterium lives for a random time that has some distribution
function F, then splits into two bacteria, and so on and so forth. As-
sume that bacteria have lifetimes that are i.i.d. random variables
with the common distribution function F which we assume to be
absolutely continuous so that its pdf f exists. Denote by Yt the num-
ber of bacteria present at time t, and let Y0 � 1. The process {Yt} is
then a simple example of a Bellman–Harris branching process (note
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that we disregard the possibility of bacterial death). By a standard
convergence result for branching processes, we have

E½e�atYt� ! c ð2:1Þ

as t ?1. Here, a is the Malthusian parameter and c is a constant,
both depending on the lifetime distribution. The Malthusian param-
eter is the unique solution to the equation

2
Z 1

0
e�atf ðtÞdt ¼ 1 ð2:2Þ

and the constant c equals

c ¼ 4a
Z 1

0
te�at f ðtÞdt

� ��1

ð2:3Þ

In fact, a stronger result holds, namely,

e�atYt ! cW ð2:4Þ

almost surely as t ?1, where W is a random variable with mean
E[W] = 1. For details and more general results, see Jagers and Ner-
man [9].

If there is lag, the actual process does not start at time 0. There-
fore, let Zt denote the number of bacteria observed at time t in a
branching process where the ancestor has lag s. Because the
branching process does not start until time s, the true time is
t � s so if {Yt} is a regular branching process, started at time 0 with-
out lag, Zt has the same distribution as Yt�s:

Zt ¼d Yt�s ð2:5Þ

Most realistically, s is a random variable, but for the time being we
shall assume it to be constant. By (2.1) and (2.5) we now get

E½e�atZt � ¼ e�asE½e�aðt�sÞYt�s� ! e�asc

as t ?1. In other words, with lag s we have

E½Zt � � ce�aseat ð2:6Þ

with equality if and only if lifetimes follow an exponential distribu-
tion with rate a (mean 1/a), in which case c = 1. Without lag we
have

E½Zt � � ceat

The factor e�as that appears due to the lag is termed the ‘‘initial
physiological state’’ parameter by Baranyi [1]. Until now we as-
sumed s to be constant. If s is a random variable we get instead
the conditional expectation

E½Zt js� � ce�aseat

with expected value

E½Zt � � cE½e�as�eat ð2:7Þ

assuming that Yt�s is independent of s. Here we recognize E[e�as] as
the Laplace transform of s, evaluated at the point a. If we start from
n0 individuals, we have

Zt ¼
Xn0

k¼1

ZtðkÞ ð2:8Þ

where Zt(k) is the size of the population started from the kth ances-
tor so that the Zt(k) are independent, identically distributed random
variables. By additivity of expected values and (2.7):

E½Zt � � cn0E½e�as�eat ð2:9Þ

Let us again assume constant lag s. Recall the Definition 1.2 of the
lag phase k. By (2.6) we get the connection between s and k if we
let y(t) = log(E[Zt]) so that y(0) = logn0. Then

yðtÞ � at þ log c þ log n0 � as

so that

k ¼ lim
t!1

t � yðtÞ � yð0Þ
a

� �
¼ lim

t!1
t � log c � asþ at

a

� �

¼ s� log c
a

ð2:10Þ

Although there is no theoretical upper bound for the constant c, for
most realistic lifetime distributions (for example the gamma distri-
bution with shape parameter a > 1) we will have c < 1 in which case
k > s. Note in particular that k > 0 even if s = 0 due to the constant
logc which measures how long it takes the population to ‘‘catch
up’’ with exponential growth. If s is a random variable, (2.7) gives,
for any value of y(0) = logn0,

k ¼ lim
t!1

t � yðtÞ � yð0Þ
a

� �

¼ lim
t!1

t � log c þ log E½e�as� þ at
a

� �

¼ �1
a
ðlog E½e�as� þ log cÞ ð2:11Þ

which agrees with Formula (5) in Kutalik et al. [10], in the case c = 1.
The reason for the absence of the constant c in Kutalik et al. [10], is
that they implicitly assume that bacterial lifetimes follow an expo-
nential distribution. Indeed, in Appendix A, they give the formula

Zt ¼ Ifs > tg þ Ifs 6 tge�aðt�sÞ

where I denotes indicator function. The formula is correct only if
lifetimes are exponential with rate a (mean 1/a), assuming that Zt

is interpreted as an expected value. The general formula is

Zt ¼ Ifs > tg þ Ifs 6 tgYt�s

recalling the relation (2.5) between the observed process Zt and the
delayed process Yt. As mentioned below (2.6), E[Yt] = eat precisely
when lifetimes follow an exponential distribution, otherwise
E[Yt] � ceat as t ?1.

3. Estimation

In order to estimate the individual lag and other population
parameters we propose to use the exact expression E[Zt] and fit
parameters using nonlinear least squares. Let us first consider
the population without lag Yt and apply the standard technique
of decomposing the population by generation. There are 2n individ-
uals in the nth generation and such an individual is present at time
t with some probability pn(t). Hence

E½Yt � ¼
X1
n¼0

2npnðtÞ

To get an expression for pn(t), recall that lifetimes are independent
and have the common cdf F. A given cell in the nth generation is
present at time t if and only if the sum of n lifetimes does not exceed
t while the sum of n + 1 lifetimes does exceed t. In standard notation
for convolution powers, we thus get

pnðtÞ ¼ F�nðtÞ � F�ðnþ1ÞðtÞ

where by convention F⁄0(t) � 1. Hence

E½Yt � ¼
X1
n¼0

2n F�nðtÞ � F�ðnþ1ÞðtÞ
� �

and with lag s, (2.5) gives conditional expectation

E½Zt js� ¼
X1
n¼0

2n F�nðt � sÞ � F�ðnþ1Þðt � sÞ
� �

ð3:1Þ
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A first approximation of the unconditional expected value E[Zt] is to
let l = E[s] and note

E½Zt� �
X1
n¼0

2n F�nðt � lÞ � F�ðnþ1Þðt � lÞ
� �

an instance of the 0th order Taylor approximation of the mean of a
function of a random variable, E[g(s)] � g(l). This means we are
effectively assuming s to be constant and we shall make this
assumption from now on. As it turns out, estimates of the mean
lag l = E[s] work quite well under this assumption even if s is ran-
dom. If the population starts from n0 ancestors, we get

E½Zt� � n0

X1
n¼0

2n F�nðt � lÞ � F�ðnþ1Þðt � lÞ
� �

ð3:2Þ

On the logarithmic scale, we are getting observations of logZt and
the least-squares fit should thus be done by fitting the curve
E[logZt] which is hard to get explicitly. A first approximation is
the obvious

E½log Zt� � log E½Zt �

but since the logarithm is a concave function, Jensen’s inequality
tells use that E[logZt] < logE[Zt] for t > 0, so we are systematically

overestimating the true expected value. A refined approximation
is given next, proved in Section A.1.

Proposition 3.1. For Zt in the exponential growth phase with n0

ancestors

E½log Zt � � log E½Zt� �
Var½W�

2n0

and

Var½log Zt � �
Var½W�

n0

where W is the limiting random variable from (2.4).
To assess the accuracy of our approximations, data were simu-

lated and compared to the expression given by Proposition 3.1. In
the simulations, bacterial lifetimes and lag times followed different
gamma distributions. Thus, lag times are not constant in the simu-
lations (in order to mimic real life data) but as we use (3.2) to
approximate E[Zt], lag times are assumed constant in the approxi-
mation, see the discussion above right before (3.2). For a compar-
ison of the approximation and simulated data, see Fig. 1 with
details given in Fig. 2. Note that the additional term introduced
in Proposition 3.1 may actually make the approximation worse
for small t since, for example if n0 = 1 we get E[logZ0] = logE[Z0] = 0.
However, as observations are obtained in the exponential growth
phase this effect can be neglected. The fact that the variance is con-
stant in exponential growth phase warrants using unweighted
nonlinear least squares, see Bickel and Doksum [6]. For the gamma
distribution, Var[W] is given in (6.2). Our model can be used to
estimate unknown parameters from observed population count
data. To check the validity of such estimation, we ran simulations
and observed the population size L(t) = logZt at 3 time-points. From
the pairs ðt1; Lt1 Þ; ðt2; Lt2 Þ; ðt3; Lt3 Þ we ran a nonlinear least-squares
fit (in Matlab) of the expression for E[logZt], using (3.2) together
with Proposition 3.1 to estimate the mean lag l = E[s] and the
mean initial population size n0. We let the initial population size
be random with a Poisson distribution with mean n0 and the lag
be random with a gamma distribution with mean l = 10 and vari-
ance 1. In the estimation, we used the approximation that both
quantities are constant. Lifetimes followed a gamma distribution
with mean 5 and variance 1. Table 1 gives estimated values of n0
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Fig. 1. Average of simulated data (red) and expected values with variance
correction term (blue) and without variance correction term (green).
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Fig. 2. Details from Fig. 1, early times (left) and late times (right). Average of simulated data (red) and expected values with variance correction term (blue) and without
variance correction term (green).

Table 1
Estimating lag times from simulated data. Standard errors in parentheses.

Initial size n0 l (ind. lag) k (pop. lag)

n0 = 3 2.99 (0.15) 9.95 (0.14) 12.21 (0.14)
n0 = 5 4.74 (0.18) 9.92 (0.17) 12.17 (0.17)
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and l = E[s] from 100 simulations runs, for different values of n0.
By the least-squares fit we can also estimate the parameters a
and b in the gamma distribution for the lifetimes, and by the
expressions in Section A.3, we can get estimates of the Malthusian
parameter a and the constant c, thereby obtaining estimates of the
population lag k, using (2.10). The true value of k was 12.22, com-
puted from Eq. (2.11). Notice that our approximations are crude, so
the estimates obtained are quite good. Several more simulations
with different parameter values gave similar results. More sophis-
ticated estimation methods based on a more careful analysis of the
model, including modeling s as a random variable, will likely im-
prove estimation. Once crucial parameters have been estimated,
we can also predict for example the expected time until the bacte-
rial population reaches a certain level which may be of interest in
food safety analysis.

4. Stable population theory

An alternative view of a population with lag is to notice that the
ancestor has a different lifetime distribution than other individu-
als. Thus, suppose the ancestor has lifetime distribution G and all
other individuals F. Assume binary splitting and no death. Then

Zt ¼ IfL>tg þ Zð1Þt�L þ Zð2Þt�L

� �
IfL6tg

where L is the lifetime of the ancestor. Condition on L to get the ex-
pected value

E½e�atZt � ¼ e�atð1� GðtÞÞ þ 2
Z t

0
e�aðt�uÞE½Zt�u�e�auGðduÞ

For any cdf F, denote the Laplace transform of its induced probabil-
ity measure, evaluated at the point a, by bF , that is,

bF ¼ Z 1

0
e�atFðdtÞ

to get the asymptotics

E½e�atZt � ! c � 2bG
In particular, if there is initial lag with cdf H and we assume this lag
to be independent of the subsequent lifetime, we have bG ¼ bHbF and
since 2bF ¼ 1 by the definition of a, we get

E½e�atZt � ! cbH
in accordance with (2.7). More realistically, the remaining lifetime
after lag phase is over does not follow cdf F because it is the remain-
ing lifetime of a cell sampled from a (stable) population. Denote the
cdf of this remaining lifetime by Fa to obtain

E½e�atZt � ! 2cbHbFa ð4:1Þ

and as it can be shown that 2cbFa ¼ 1, we have shown:

Proposition 4.1. In a branching process with lag s and an ancestor
sampled from a stable population,

E½e�atZt � ! bH
as t ?1.

For a proof, see Section A.2. We get the linear approximation

log E½Zt� � at þ log bH
and with the further 0th order Taylor approximation log bH � �as
we get

log E½Zt� � at � as

which, quite interestingly, agrees with the simple biphasic model
stated in (1.1). We will not pursue this approach further in the

present article, but in future refined estimation procedures, it ought
to be taken into account that once the individual lag phase is over,
the remaining life does not follow the individual cdf F but rather Fa.

5. Discussion

Accurate modeling and estimation of bacterial lag phase is
important in the food sciences. We introduced a branching process
model where lifetimes are assumed to follow a gamma distribution
and individuals reproduce by splitting. The gamma distribution is
flexible and does not make the (sometimes implicit) no-aging
assumption of the exponential distribution. We obtained both exact
and asymptotic formulas for the expected population size E[Zt] at a
given time t, and also an approximation formula for E[logZt]. Simu-
lations indicated that our approximation formula agrees well with
data. We also estimated the expected initial size, n0, and the mean
length of lag phase, l. Although our estimates were done with non-
linear regression using crude approximations, they turned out to be
reasonably accurate. In the future, we propose to develop more
sophisticated estimation procedures by more careful analysis of
the model. The most obvious extension is to let s be a random var-
iable and make assumptions about its distribution, aiming to esti-
mate parameters of its distribution. The considerations in Section
4 regarding the special features of the ancestor should also be fur-
ther developed, in particular in the case of more than one ancestor.
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Appendix A

A.1. Proof of Proposition 3.1

First recall the Taylor expansion of the natural logarithm of a
random variable X with mean l and variance r2

log X � loglþ 1
l
ðX � lÞ � 1

2l2 ðX � lÞ2

which gives

E½log X� � log l� r2

2l2

In particular, we choose X = Zt and recall that Zt has the same distri-
bution as Yt�s where we assume that s is constant. By (2.6) and (2.8)
we have

E½Zt � � cn0e�aseat

and as it can be shown that the convergence in (2.4) holds also in L2

(see [9]), we have

Var½Zt� � c2n0e�2ase2atVar½W�

as t ?1, by additivity of variances for independent random vari-
ables. We now get

E½log Zt � � log E½Zt� �
Var½Zt�
2E½Zt �2

� log E½Zt � �
c2n0e�2ase2at Var½W�
ðcn0e�aseatÞ2

¼ log E½Zt� �
Var½W�

2n0

For the variance, use the Taylor expansion

log X � loglþ 1
l
ðX � lÞ
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so that

Var½log X� � r2

l2

which gives

Var½log Zt � �
Var½Zt �
E½Zt �2

� c2n0e�2ase2atVar½W�
ðcn0e�aseatÞ2

¼ Var½W�
n0

Hence, the variance of logZt is approximately constant in the expo-
nential growth phase. h

A.2. Proof of Proposition 4.1

Let us first prove a preliminary lemma dealing with the remain-
ing lifetime of the ancestor who is sampled from a stable
population.

Lemma 6.1. The cdf of the remaining lifetime of the ancestor equals

FaðtÞ ¼ 2a
Z 1

0
e�asðFðsþ tÞ � FðsÞÞds

There is a general procedure to find asymptotic probabilities of
which we present the special case needed for our application. To
that end, consider some individual property of interest, call it A.
We want to find the asymptotic probability P(A) in an exponen-
tially growing population. Let P(A,s) denote the probability that
an individual of age s has property A; then,

PðAÞ ¼ 2a
Z 1

0
e�asPðA; sÞds ð6:1Þ

The factor 2a is the reciprocal of the asymptotic probability that a
randomly sampled individual is alive, and the integral is the asymp-
totic probability that the individual is alive and has property A. For
details and more general results, see Jagers and Nerman [9]. In our
case, denote the remaining lifetime of an individual by Y, fix t, and
let A be the property that Y 6 t. Thus, we need to figure out the
probability that an individual of age s has Y 6 t. Denoting the life-
time of the individual by L, we get

PðY 6 t; sÞ ¼ Pðs 6 L 6 sþ tÞ ¼ Fðsþ tÞ � FðsÞ

and hence

PðY 6 tÞ ¼ 2a
Z 1

0
e�asðFðsþ tÞ � FðsÞÞds

which proves the lemma.
If integration under the integral sign is allowed, we can also get

the pdf fY(t). By Leibniz integral rule, this is the case if the pdf f of F
is continuous. If f is not continuous, the interchange of differentia-
tion and integration may still be allowed ifZ 1

0
e�asf ðsþ tÞds <1

by Theorem (2.27) in Folland [7]. Both these conditions are satisfied
for the gamma distributions, as well as any other distribution that is
likely to arise in applications. Thus, for all practical intents and pur-
poses, the pdf of Y is

fY ðtÞ ¼ 2a
Z 1

0
e�asf ðsþ tÞds

We can now prove Proposition 4.1 which we restate for sake of
readability:

E½e�atZt� ! bH
where

bH ¼ E½e�as�

the Laplace transform of the lag s. We will use (4.1) and show that
2cbFa ¼ 1. Note that

bFa ¼
Z 1

0
e�atfY ðtÞdt ¼ 2a

Z 1

0

Z 1

0
e�aðsþtÞf ðsþ tÞdsdt

¼ 2a
Z 1

0

Z 1

t
e�auf ðuÞdudt ¼ 2a

Z 1

0

Z u

0
e�auf ðuÞdtdu

¼ 2a
Z 1

0
ue�auf ðuÞdu

and by (2.3), 2cbFa ¼ 1 which concludes the proof.

A.3. Formulas

In the case of lifetimes being C(a,b), we can get explicit expres-
sions for the main parameters. The pdf for the C(a,b) distribution is

f ðtÞ ¼ ba

CðaÞ e
�btta�1; t P 0

where C(a) is the gamma function. The integral in (2.2) for the def-
inition of the Malthusian parameter a is easily computed as

2
Z 1

0
e�atf ðtÞdt ¼ 2ba

ðaþ bÞa

which set equal to 1 gives

a ¼ bð21=a � 1Þ

The constant c is defined in (2.3) and can be shown to equal

c ¼ 2ðaþ1Þ=a

4að21=a � 1Þ

Finally, the variance of the limiting random variable W equals

Var½W� ¼
4
R1

0 e�2at f ðtÞdt � 1
1� 2

R1
0 e�2atf ðtÞdt

see Theorem 19.1, Chapter VI, in Harris [8]. For our gamma distribu-
tion we get

Var½W� ¼
4 1

2
aþ1

a �1

� �a
� 1

1� 2 1

2
aþ1

a �1

� �a ð6:2Þ
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