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A cell population in which cells are allowed to enter a quiescent (nonproliferating) phase is analyzed
using a stochastic approach. A general branching process is used to model the population which, under
very mild conditions, exhibits balanced exponential growth. A formula is given for the asymptotic fraction
of quiescent cells, and a numerical example illustrates how convergence toward the asymptotic fraction
exhibits a typical oscillatory pattern. The model is compared with deterministic models based on semigroup
analysis of systems of differential equations.
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1. Introduction

The cell cycle of a eukaryotic cell consists of four phases: G1 where the cell grows, S where its
DNA synthesizes, G2 where it prepares for division, and M where it divides. However, it may
also happen that a cell in G1 enters another phase called G0 where the cell is said to be quiescent.
The decision whether to enter G0 is made at a particular time, the restriction point. A cell may
remain quiescent indefinitely, as is for example often the case with neurons, but it may also leave
G0, re-enter G1 a the point where it left, and proceed through the cell cycle, [6].

Cell populations with quiescence have attracted interest from the mathematical modelling
community, primarily via deterministic models based on differential equations, [1,3,4]. In such
models, a fundamental property of cell populations is that of asynchronous (or balanced) exponen-
tial growth, which means that the population grows exponentially at the same time as proportions
of various individual characteristics converge to a stable limiting distribution, independently of
initial conditions.

In [1] and [3], deterministic models of a population of proliferating and quiescent cells are
introduced and analyzed. The models in the two papers differ only slightly from each other, and
are based on stating a system of partial differential equations for the densities of quiescent and
proliferating cells. The variables are time and cell age, and the main goal is to establish sufficient
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(and to some extent necessary) conditions for asynchronous exponential growth, using semigroup
methods.

We propose a stochastic model that is intuitively clear and avoids some of the assumptions
of the deterministic models, yet establishes similar results. The theoretical tools come from the
theory of general branching processes, [5].

2. The branching process model

The fundamental mathematical object in a general branching process is the reproduction process,
ξ . This is a point process on [0, ∞] that describes how an individual reproduces, thus ξ(a) =∫ a

0 ξ(dt) gives the number of children up to age a. Each newborn individual starts reproducing
according to a copy of ξ , independently of other individuals. In cell populations where reproduction
is by division, ξ is characterized by two random variables: the lifetime L and the number of
offspring X. Specifically,

ξ(dt) = XδL(dt)

where δL is the unit point mass at L.
To capture the growth rate of the process, we consider the mean reproduction process, μ(dt) =

E[ξ(dt)], and, in particular, its Laplace transform

μ̂(r) =
∫ ∞

0
e−rtμ(dt).

The growth rate is now determined by the Malthusian parameter, which is the number α that
satisfies μ̂(α) = 1. If α > 0, the process is said to be supercritical, which means that it grows
as eαt and has a chance of avoiding extinction. In a cell population with no death, the equation
defining α becomes

2F̂ (α) = 1

where F is the distribution function of L. For a comprehensive treatment of general branching
processes, see [5].

Let us now turn to our model. Denote by T the time until the restriction point. At this point,
with probability q, the cell enters the G0 phase and becomes quiescent for a time denoted by G0,
after which it returns to G1 and finishes the cell cycle in an additional amount of time U . With
probability 1 − q, the cell does not enter G0 and finishes the cycle in an additional amount of
time U . When the cell cycle is completed, the cell divides into two daughter cells. We assume that
T , U , and G0 are continuous random variables with finite expectations. Let Q denote the event
that the cell becomes quiescent, let FT +U denote the distribution function of T + U and FT +G0+U

the distribution function of T + G0 + U . The reproduction process becomes

ξ(dt) = 2IQcδT +U(dt) + 2IQδT +G0+U(dt)

where I denotes indicator function. Further

μ(dt) = 2(1 − q)FT +U(dt) + 2qFT +G0+U(dt) (1)

and the Malthusian parameter is defined by the equation

μ̂(α) = 2(1 − q)F̂T +U(α) + 2qF̂T +G0+U(α) = 1.

To keep track of quiescent cells, we employ the use of random characteristics. In a general
branching process, a random characteristic χ is a stochastic process that follows an individual
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388 P. Olofsson

from its birth and at age a records the score χ(a). The notation Z
χ
t is introduced for the

χ -counted population, that is, the sum of all χ -scores in a population at time t . To count the
number of quiescent cells at time t , we introduce the characteristic χQ, defined by

χQ(a) = I {Q ∩ {T < a, T + G0 > a}}, a ≥ 0

the indicator of the event that the cell is quiescent at age a, which means that Z
χQ

t is the number
of quiescent cells at time t .

The characteristic counting the total number of cells present in the population is χT defined by

χT (a) = I {Qc ∩ {T + U > a}} + I {Q ∩ {T + G0 + U > a}} (2)

the indicator of the event that the cell is present in the population at age a, where we separate into
the two cases that it is proliferating and that it is quiescent. Thus, the fraction of quiescent cells
at time t is

Q(t) = Z
χQ

t

Z
χT

t

and we are interested in the limit of Q(t) as t → ∞ (bearing in mind that Q(t) is a ran-
dom quantity). To ease notation, introduce the two survival functions GT +U = 1 − FT +U and
GT +G0+U = 1 − FT +G0+U , and the function H(t) = P(T < t < T + G0). The Laplace trans-
form f̂ of a function f is given by f̂ (α) = ∫ ∞

0 e−αtf (t)dt and we can state the main result next.
The proof is given in Appendix A.

PROPOSITION 1 Let Q(t) denote the proportion of quiescent cells in the population at time t .
Then, with probability 1,

Q(t) −→ qĤ (α)

(1 − q)ĜT +U(α) + qĜT +G0+U(α)

as t → ∞.

Note that our formula for the asymptotic fraction is very similar to the one given in Theorem
2 in [3], with their parameter f , the probability that a cell is born into the proliferating phase,
equal to one, and their w’s playing the role of our G’s (which, as is easily checked, satisfy the
differential equation given for W in [3]).

3. An example

To illustrate how the convergence toward the limit in Proposition 1 occurs, let us consider an
example where we suppose that T , U , and G0 are independent random variables, each with a
gamma distribution with parameters 3 and 1. Then T + U and T + G0 + U also have gamma
distributions: T + U ∼ �(6, 1) and T + G0 + U ∼ �(9, 1), where we recall that the probability
density function of �(n, 1) is

fn(t) = e−t tn−1

(n − 1)! , t ≥ 0.

The gamma distribution is a flexible and useful distribution for quantities that are nonnegative
and tend to have slightly skewed distributions as is typically the case for cell lifetimes. Our
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Figure 1. The fraction of quiescent cells as a function of time.

choice of parameters is arbitrary, but the parameter values do not qualitatively alter the pattern of
convergence toward the limit.

The Laplace transform of the �(n, 1) density is 1/(1 + α)n and the Malthusian parameter is
defined by the equation

2(1 − q)

(1 + α)6
+ 2q

(1 + α)9
= 1.

For this example, we choose q = 0.9, which gives α ≈ 0.08 and the limit of Q(t) becomes ≈ 0.30
(see Appendix B for details).

To illustrate the convergence of Z
χQ

t /Z
χT

t toward its limit, we consider its expected value and
make the following simplifying first-order approximation:

E

[
Z

χQ

t

Z
χT

t

]
≈ E[ZχQ

t ]
E[ZχT

t ] (3)

where it is shown in Appendix B how to deal computationally with E[ZχQ

t ] and E[ZχT

t ]. As a side
note, let us point out that it is the latter ratio in Equation (3) that also the deterministic models
deal with. In Figure 1, E[ZχQ

t ]/E[ZχT

t ] is plotted as a function of time and we can notice an
oscillatory behaviour which is typical for functions dealing with cell cycle properties, [2].

4. Discussion

We have established explicit expressions for the asymptotic fraction of quiescent cells in a pop-
ulation of quiescent and proliferating cells. The model is a general branching process whose
conditions are mild and biologically reasonable. It is interesting to compare with the deterministic
model in [3], where similar results are established but the assumptions are more restrictive.

One problem with the model in [3] is that the transition rates between states, as well as the
division rate, all depend on the cell’s age and nothing else. Thus, two proliferating cells of
the same age are considered equally likely to divide even if one of them has spent most of
its life as quiescent. Our way of modelling the stages of the cell cycle avoids this undesirable
property.
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390 P. Olofsson

The model in [3] allows a cell to transfer in and out of quiescence any number of times,
which is not allowed in our model. However, it does not seem to be motivated by biological
considerations [6], and we could adjust our model to allow for such back-and-forth transitions
simply by adding more checkpoints. In such a model, it is important to keep track of the total
amount of time spent in the proliferating state as it is this time, not the age of the cell, that
determines the cell’s position in the cell cycle and thus its readiness to divide.

Finally, in [3] there are assumptions about boundedness of lifetimes as well as other technical
conditions that we avoid altogether.
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Appendix A

The proof of Proposition 1 follows from Theorem 5.10 in [5]. Suppose that the mean reproduction process μ(dt) is
nonlattice (cannot be supported by any lattice {a, 2a, 3a, . . .}), let α > 0 be the solution to the equation μ̂(α) = 1, define
β = ∫ ∞

0 te−αtμ(dt), and let χ1 and χ2 be two random characteristics. Then,

Z
χ1
t

Z
χ2
t

−→ E[χ̂1(α)]
E[χ̂2(α)]

almost surely as t → ∞ under the following conditions:

(i) β < ∞

(ii) μ̂(r) < ∞ for some r < α

(iii) E

[
sup
a

e−αaχ(a)

]
< ∞

(iv)
∞∑

k=0

sup
k≤a≤k+1

e−αaE[χ(a)] < ∞

Recalling that, we have

μ(dt) = 2(1 − q)F1(dt) + 2qF2(dt)

where F1 and F2 are distributions functions of finite-mean random variables, it is easily seen that (i) and (ii) hold. Moreover,
the characteristic counting all cells is

χT (a) = I {Qc ∩ {T + U > a}} + I {Q ∩ {T + G0 + U > a}}

which implies that χT (a) ≤ 1, and (iii) and (iv) follow immediately. Similarly, (iii) and (iv) hold for the characteristic

χQ, and as E[χ̂Q(α)] = qĤ (α) and E[χ̂T (α)] = (1 − q)Ĝ1(α) + qĜ2(α), the proof of Proposition 1 is complete.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
l
o
f
s
s
o
n
,
 
P
e
t
e
r
]
 
A
t
:
 
1
5
:
2
0
 
1
3
 
O
c
t
o
b
e
r
 
2
0
0
8



Journal of Biological Dynamics 391

Appendix B

In Section 3, we used the approximation

E

[
Z

χQ

t

Z
χT
t

]
≈ E[ZχQ

t ]
E[ZχT

t ]

where E[ZχQ

t ] and E[ZχT
t ] were computed numerically. To do so, standard results from renewal theory yield

E[Zχ
t ] = E[χ ] ∗ ν(t) =

∫ t

0
E[χ(t − u)]ν(du)

where ν is the renewal measure

ν(du) =
∞∑

n=0

μ∗n(du)

μ∗n being the n-fold convolution of μ where μ∗0 by definition equals δ0, the unit point mass at 0. For details, see [5].
In our cell population reproduction is by division. Denote the lifetime distribution function by F to get the relation

μ∗n(t) = 2nF ∗n(t)

Here, 2n is the number of individuals in the nth generation and F ∗n(t) is the distribution function of the sum of n

independent lifetimes.
Recalling that the lifetime L equals T + G0 + U if quiescence occurs, and T + U otherwise, we can obtain an

expression for F ∗n, the distribution of the sum of n independent copies of L. Such a sum contains n copies each of T and
U and X copies of G0 where X has a binomial distribution with parameters n and q. We get

F ∗n =
n∑

k=0

(
n

k

)
qk(1 − q)n−kF ∗n

T ∗ F ∗n
U ∗ F ∗k

G0

In our example, we chose T , U , and G0 to be independent �(3, 1), in which case F ∗n
T ∗ F ∗n

U ∗ F ∗k
G0

is the gamma distribution
with parameters 6n + 3k and 1, and the density becomes

d

du
F ∗n(u) = e−u

n∑
k=0

(
n

k

)
qk(1 − q)n−k u6n+3k−1

(6n + 3k − 1)!

The functions that are to be integrated are E[χQ(t)] and E[χT (t)], which are easily computed. For example,

E[χQ(t)] = P(cell is quiescent at age t) = q

∫ t

0
P(G0 > t − u)fT (u)du

For the example, we chose q = 0.9 which gave α ≈ 0.08, which makes the limit in Proposition 1 ≈0.30.
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