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Abstract

Shortening of chromosome ends, known as telomeres, is one of the supposed
mechanisms of cellular aging and death. We provide a probabilistic analysis of the
process of loss of telomere ends. The first work concerned with that issue is the paper by
Levy et al. [J. Molec. Biol. 225 (1992) 951-960]. Their deterministic model reproduced
the observed frequencies of viable cells in the in vitro experiments. Arino et al. [J. Theor.
Biol. 177 (1995) 45-57] reformulated the model of Levy et al. (1992) in the terms of
branching processes with denumerable type space. In the present paper, the mathe-
matical results of Arino et al. (1995) are extended to the case in which cell death is
present, in cells with telomeres above and below the critical threshold of length, gen-
erally with differing probabilities. Both exact and asymptotic results are provided, as
well as a discussion of biological relevance of the results. © 1999 Elsevier Science Inc.
All rights reserved.
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1. Introduction

Shortening of chromosome ends known as telomeres, is one of the supposed
mechanisms of cellular aging and death. As discussed in the review by Harley
[1], it has been known that telomeres play an important role in chromosome
structure and function. Under normal circumstances, aberrations involving
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telomeres are extremely rare. On the other hand, broken chromosomes lacking
telomeres are highly unstable, producing translocations, fusions and other
aberrations. Thus telomere deletions could have severe consequences on cell
functions. Also, incomplete replication of DNA at the ends of linear chro-
mosomes is predicted from the known biochemical characteristics of DNA
replication, unless distinct mechanisms exist for replication of ends of DNA
molecules. It is possible that somatic cells lack these mechanisms (used by
immortal cells to completely replicate telomeres) and as a natural consequence
suffer loss of some telomeric DNA at every round of cell division.

This loss of telomeres is proposed by some cell biologists as an explanation
for the finite proliferative capacity of cell lines. Some cells, known as immortal
cells, have arrested telomere shortening due to the presence of enzyme telom-
erase, which replaces the lost nucleotides upon each division. This includes
some cancer cells, which continue to divide with much shorter telomeres and
thus undergo many more cell divisions than normal cells. The role of chro-
mosomal telomere loss is a fundamental problem in cell biology.

Experimental evidence, gathered mainly from primary fibroblast cell cul-
tures, suggests that cells possess a genetic mitotic clock which influences their
division capacity. In the terminal passages of the cell cultures, there is a fairly
dramatic increase in the frequency of cells with chromosomal aberrations,
notably telomere fusions. These karyotypic changes may result from and not
initiate the decline of the culture. However, it is possible that chromosomal
aberrations and the senescent decline are both initiated by the same events.

Two plausible molecular mechanisms for these events have been proposed.
Olovnikov [2] suggested that cells lose a small amount of DNA following each
round of replication due to the inability of DNA polymerase to fully replicate
chromosome ends (telomeres), and that eventually, after a certain number of
divisions, a critical deletion causes cell death. Holliday [3] proposed that DNA
replication was accompanied by progressive methylation to repetitive DNA,
which would lead to cell senescence after a certain number of divisions.

Olovnikov’s [2] ‘end-replication’ problem is the inability of DNA poly-
merase to fully replicate the ends of a linear DNA molecule. DNA consists of
strands that are antiparallel and DNA polymerases require a primer to initiate
unidirectional synthesis. Thus, following replication each duplex would be
shortened on the 5' end of the daughter DNA strand. This type of telomere loss
generates a 3’ single stranded overhang which, if not degraded, is converted to
a double stranded deletion in the subsequent generation.

The aim of the present paper is to provide foundations for a rigorous
probabilistic analysis of the process of loss of telomere ends. The first work
concerned with that issue is the paper by Levy et al. [4]. We base our consid-
erations on ideas developed in that paper, the authors of which developed a
simple mathematical model of the process. The model was essentially deter-
ministic and did not account directly for the observed variability of cell pro-
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liferation. Nevertheless, it reproduced the observed frequencies of viable cells
in the in vitro experiments.

Arino et al. [5] reformulated the model of Levy et al. [4] in the terms of
branching processes with denumerable type space. This approach made pos-
sible to include variability in cell cycle times. They provided mathematical
results regarding dynamics of the models, in particular their essentially poly-
nomial asymptotics. Also, they fitted the models to data from two different
sources, using an approach differing from that of Levy et al. [4]. Their main
conclusion was that the end-replication hypothesis provided an explanation for
the cell aging process which was quantitatively consistent with the data.

In the present paper, the mathematical results of Arino et al. [5] are extended
to the case in which cell death is present, in cells with telomeres above and
below the critical threshold of length, generally with differing probabilities.
Both exact and asymptotic results are provided, as well as a discussion of bi-
ological relevance of the results.

2. Model of the loss of telomeres

The model describes shortening of telomeres by incomplete replication. In
accordance with the models by Levy et al. [4] and by Arino et al. [5] we assume
that telomeres are the components of the terminal restriction fragments (TRFs)
detectable by a molecular probe. The TRF consists of telomeres which are the
terminal TTAGGG or TTAGGG-like DNA repeats, and of non-terminal
subtelomeric non-TTAGGG-like DNA repeats.

The two uses of the model are prediction of: (1) the expected telomere length
and (2) of the fraction of viable cells, in aging cell populations. For these
purposes, it is first necessary to describe the dynamics of telomere loss from a
single chromosome. For simplicity, we proceed as if the process of telomere
loss ended when all the telomere deletion units, each containing possibly more
than a single TTAGGG-like repeat, are lost. The same mathematics applies to
telomere loss until a particular checkpoint is encountered.

A chromosome is an entity with a centromere, while a chromatid is a double
helix composed of two single strands of DNA. In G, phase of the cell cycle,
before DNA replication, a chromosome is composed of one chromatid, while
in G, and M phases, after DNA replication, a chromosome is composed of two
chromatids. Levy et al. [4] described telomere loss in terms of what happens to
single DNA strands in Gy (cf. Fig. 2 in that paper). We follow that description.

Our Fig. 1 depicts the scheme of deletion and segregation of telomere se-
quences on the ends of two DNA strands constituting the chromatid in Gy,
following Levy et al. [4]. These rules can be summarized as follows:

e Each chromatid is composed of two strands named upper or 5 — 3, and
lower or 3’ — 5, each of which has two ends named left and right. The num-
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Fig. 1. Transition rules for deletion and segregation of telomere ends on a chromosome in the G,
phase of the cell cycle. DNA strands 1 and 2 replicate and segregate into different daughter cells A
and B, resulting in chromatids (1A, 2A) and (1B, 2B), respectively. Due to the end-replication
problem, one DNA strand on each of the newly created chromatids contains additional deletion at
its right or left end, depending on its orientation and presence of the deletion on the corresponding
strand of the mother chromatid. For additional explanations, cf. Fig. 1 in Ref. [4].

bers of telomeric deletion units on both ends of both strands are listed as the
quadruples of the form (a, b;¢,d), where a and ¢ correspond to the left and
right ends of the upper strand, while b and d correspond to the left and right
ends of the lower strand. The only admissible combinations of «, b, ¢ and d
are of the form (n — 1,n;m,m) or (n,n;m,m — 1).

e Cells containing chromatids described by the quadruple (n — 1, n;m, m) give
birth to two progeny containing chromatids of the types (n — 1,n;m, m) and
(n—1,n—1;m,m — 1), respectively. This transition rule as well as an analo-
gous rule for the other admissible type are depicted symbolically below. Let us
note that one progeny is always of the same type as the parent cell, while the
other is missing two sequences, each on a different end of a different strand:

. - (l’l— l,n;m,m),
(n =1, m5m,m) {—> m—1Ln—1;mm-—1),

: — (n,nym,m —1),
(2, 3, m — 1) {—> (n—1,m;m—1,m—1),
e The process ends when the telomere ends become short enough. Without
loss of generality, we assume that cells of the types (n— 1,n;0,0) and



P. Olofsson, M. Kimmel | Mathematical Biosciences 158 (1999) 75-92 79

(0,0;m,m — 1) have a single progeny of the type identical to that of the par-
ent cell, i.e.:

(n—1,n;0,0) — (n—1,n;0,0),
(0,0;m,m — 1) — (0,0;m,m — 1).

Remark 1. Let us notice that each non-identity transition of our process
corresponds to the loss of two deletion units. This is important when fitting the
model to data.

If we renumber states in such way that index k = 0, 1, ..., is equal to the sum
of numbers of deletion units on the left ends of the upper and lower strand, and
index / =0,1,...,is equal to the sum of numbers of deletion units on the right
ends of the upper and lower strand:

2n  if (n,n;m,m — 1) occurs,

k=< or (1)
2n—1 if (n —1,n;m,m) occurs,
2m if (n—1,n;m,m) occurs,

=< or (2)
2m —1 if (n,n;m,m — 1) occurs,

then the admissible transitions become

U‘J){: Ell?i)i,z—l), G)
(ka 0) - (k,()), (4)
(0,1) = (0,1). (5)

In the array (k,/), where k and / are non-negative integers, the admissible
transitions belong to disjoint paths which can be numbered by k& — / (path
number assuming values from —oo through oo). Each of these paths can be
treated separately. The state number within each path can be taken as
i = min (k, ). Biologically, it is the number of deletion units on the shorter,
and therefore limiting, end. Now the transitions have the form

{2 ©)

— i—1,
0—0. (7)
3. Main results

We start by briefly describing the mathematical model and main result of
Arino et al. [5]. The evolution of the process is as follows: lifelengths of cells are
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independent, identically distributed random variables with the common density
f(t) = ae™™, ie. exponentially distributed with mean 1/x. At the moment of
death, a cell of type i splits into two cells, one of type i and one of type i — 1, for
i = 1. A cell of type 0 simply replaces itself at the moment of death, or putin a
different way, O-type cells are immortal.

Now assume that the process is started with one cell of type i > 1. We are
interested in the expected number of cells of type i — k, £ < i at time ¢, denoted
by M;; (¢). It turns out that it is useful in the analysis to consider also the
expected number of cells of type i — k in the nth generation, denoted by mf'flk
which in the model in Ref. [5] turns out to equal nk.

The main result is that, under these assumptions,

ok ek

M;; (1) = o (8)

for k < i. It is further shown that, if lifelengths are not exponential, the
same formula holds asymptotically if the lifelengths are bounded with mean
1/a.

We consider two extensions of these results. First, and most important, we
consider the exponential case and introduce possible cell death into the model,
i.e. the possibility that cells die without dividing. This gives qualitatively dif-
ferent results in terms of the composition of the cell population. From a
theoretical point of view, we note that the methods we use are different from
those in Ref. [5]. There, analytical methods are used whereas we use combi-
natorial and probabilistic methods which turn out to work in greater gener-
ality.

It should be pointed out here that both Theorems 1 and 2 in the next section
may be proved by using general results for Markovian branching processes.
These can be found for instance in Ref. [6]. We give alternative proofs that in
this particular situation are more intuitive and also in principle extend beyond
the Markovian case.

Second, we explore the asymptotics for the model in Ref. [5] for general
lifelength distributions. The expression for M;, ,(¢) is now a certain infinite
sum. It turns out that the asymptotics remain the same for arbitrary lifelength
distributions, so for asymptotic properties, the assumption of exponential
lifelengths is not crucial. For finite time properties, the inifinite sum can be
computed numerically for a given lifelength distribution. The asymptotic result
is stated and proved in Appendix A.

3.1. Models with cell death

Let the ancestor be of t;/pe i. Recall M;; (¢), the expected number of i — k-
type cells at time ¢ and m,('ff +» the expected number of i — k-type cells in the nth

generation. The two relate in the following way:
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Mi(t) = m? (G (1) — GV (1)),
n=k

where G is the distribution function of the lifelength and G* its n-fold con-
volution, the distribution of the sum of # i.i.d. lifelengths. To understand this
formula, note that at time ¢, cells from any generation may be present. Since
there are mf':)_k individuals in the nth generation and each of these is alive at
time ¢ with probability G*(f) — G*"*)(¢) (born before ¢ but not yet dead at ¢),
the expected number of cells from the nth generation present at time 7 is simply
mff;lk(G*"(t) — G (¢)). Summing over all the generations then gives us
M (1)

The identity may be formally derived as the unique solution to a certain
renewal equation, for a more general version of this, see Ref. [7].

In particular, if lifelengths are exponential («), it is well known that

n—1 k
on N ()
() =)

k=0
a gamma distribution with parameter n» and « and hence
o0 n
_ m ()
Mj—k(t) = wzmi,ifkT' (9)

n=k

If there is no cell death, m", = (%) and hence

A/[z:ifk(t) = efwi (Z) (OZ,) = %eiwi

n=k : n=k (

n

()" (o)
n—k)\ k!

as in Arino et al. [3].

Hypothesis 1. O-type cells survive with probability p and die with probability
1 —p.

Clearly, M;; (¢) will be as above as long as k < i; when k=i we have an
asymptotic result:

Theorem 1. Under Hypothesis 1, if cell lifelengths are exponential with parameter
a’

O
M ,(t) = =1,...,k
kv_](t) (k—])" J I ’
and
1 ()
Myo(1) M1 p k=1
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Note. The lifelength L, of a O-type is exponential («(1 — p)). To see this, note
that O-types die with probability (1 — p) at the points in a Poisson process with
intensity «. With N(¢) denoting the number of points up to time 7 in this process
we thus obtain

P(Ly > 1) = kf;p"P[N(t) = k] = ipke“t%?

— e Hl-p)

Therefore, by introducing cell death for 0-type cells, we are actually modelling
the situation where non-zero cells have lifelengths that are exponential with
mean 1/« and zero cells have lifelengths that are exponential with another
mean 1/7. By choosing p suitably we can achieve this for any 7. Hence we have
a model where there are no longer any immortal cells, and two different death
rates.

Note. The factor 1/(1 — p) is the mean in a geometric distribution with
success probability 1 — p.

Proof. See Appendix A.

In the model with immortal cells, the 0-cells tend to dominate since their
growth rate is the fastest. In the model with cell death, the 1-cells have the same
growth rate so asymptotically they will dominate together with the O-cells in
the proportions 1 to 1/(1 — p). This is already a qualitative difference between
the two models. Next we introduce the possibility that also non-zero cells die
without reproducing.

Hypothesis 2. Assume that a cell survives with probability p if it is of type 0 and
with probability ¢ otherwise.

The result is now shown in Theorem 2.

Theorem 2. Under Hypothesis 2, if the lifelengths are exponential with parameter o

k—j
t
M ,(t) = Me*“(“")’, j=1,...,k

(k=)
() 1f p = g. then
k
t
Mig(t) = PO emsrman

(i) If p < q, then

Mio(t) ~ q (ogt)*

qg—p (k=1)

-1
—a(l—q)t
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(iii) If p > q, then
q k
M o(t) ~ <_) e Hl-p)
p—q
Proof. See Appendix A.

Note that the polynomial growth is now asymptotically killed by an expo-
nential decay factor, determined by the larger of the two survival probabilites p
and ¢. A natural generalization would be to let a cell of type i survive with
probability p; but for the applications we are primarily concerned with in this
paper, this is not of much use. This, and other generalizations will be attempted
elsewhere.

3.2. Arbitrary lifelength distributions

Consider the case when the lifelengths have the common distribution
function G and there is no cell death. We know that

My j(t) = ZOO: <kij>(1 — G) % G™(1).

n=k—j
The asymptotic behaviour of M ;(¢) is given in Theorem 3.

Theorem 3. Assume that the lifelengths are not identically 0. Then, as t — oo,
<

k=)

where @ < oo is the mean lifelength.

My j(t) ~

The above result is an extension of the result in Ref. [5]. Their result, as
represented in our expression (8), is obtained as a special case from Theorem 3

by setting u = o'

4. Computational results

In telomere shortening experiments, the quantities observed experimentally
are: (i) the fraction F(¢) of proliferating cells, and (ii) the mean length E(¢) of
telomere endings, in culture. These two quantities are given by the following
expressions:

M)

PO =S

(10)
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koo
E(f) = Z/](:IJMM(I) . (11)
Z j=0 Mk,j (t )

Another potentially observable quantity is the total number of cells in culture,
Zf-:o M, ;(t). However, this latter is rarely accounted for, as cell cultures pro-
ceed through series of passages. Let us notice that according to Theorem 3, the
ratio of the number of proliferating to non-proliferating cells exhibits different
limit properties depending on the relationship between p and ¢g. As can be
directly verified, as t — oo,

Sy M (1)
Mio(2)

S iMi(0) _q-r.
M;o(2) q '

Zf:l ij,j(t)
Mk,O (f)

1

0<p<g«l,

=O[ e 90 < g < p<1,

M@ ]

~
~ao
-

e
~
-
S
~

~
~a.
-

-10 4

-20 -

Fig. 2. Convergence of M;((¢) to its asymptotics for a combination of parameters: p = 0.8, ¢ = 0.6,
o =1, and k = 10. Continuous line: exact value; dotted line: asymptotics.
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while the total number of cells eventually tends to 0, except for cases p=1 or
g=1. Particularly interesting is the case 0 < p < ¢ <1, in which

ro- ()[(450) ] -5

as t — oo, i.e. the fraction of proliferating cells remains positive for arbitrarily
long times. It can be demonstrated that in this case, E(co) = F(00).

Fig. 2 depicts the convergence of M, ((¢) to its asymptotics for a combina-
tion of parameters. Fig. 3 depicts the plots of F(¢) and E(¢) for another com-
bination of parameters. Numerical computations were carried out using
expressions (13) and (12) of the Appendix A.

5. Discussion

The purpose of this paper was to introduce refined models of telomere
shortening in the form of a multitype branching process which allows for the
possibility of cell death. We identified several interesting variants and provided
exact computable expressions as well as asymptotic expressions for the ex-
pected values of the process. In one variant of the process, 0 < p < ¢ <1, the
fraction of proliferating cells remains positive for arbitrarily long times (al-
though the total cell population eventually declines). This demonstrates that
experimental cell lines may display apparent stability despite the fact that they
do not become immortalized.

The current paper has a speculative character and the model plots are not
intended to be compared to experimental data, at least not in a quantitative
sense. However, let us notice that the in vitro telomere data are based on cell
counts in excess of 10° cells (Levy et al. [4]) and therefore the estimates of
Egs. (10) and (11) can be reliably obtained as ratios of respective cell counts.
Such estimates were employed by Levy et al. [4] and by Arino et al. [5].

The model considered in our paper is a particular multi-type Bellman—
Harris process. Moreover, for exponential lifelenghts, our results could be
obtained using classical theorems (Mode [6]). However, from the point of view
of possible applications, we need to know the constants arising in the theorems
explicitely and it does not seem easier to compute the matrix powers that would
have to be done using classical results. Our proofs, in these special cases, are
closer to intuition. For the general lifelength distributions, we have found no
results in the literature covering this particular case. The results in Mode’s [6]
book concern either the supercritical case (Perron—Frobenius roots greater
than one) or the positively regular case.

We identified two sources of data that relate to our process. One is the data
of Harley and Goldstein as cited by Levy et al. [4] in which fractions F(¢) of
proliferating cells were measured at different times after a clonal culture had
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Fig. 3. Fraction of proliferating cells F(¢) and mean length of telomeres E(¢) for a combination of
parameters: p = 0.3, ¢ = 0.8, o = 1, and k = 10. Continuous lines: F(t) and E(t); dotted lines: as-
ymptotic values.

been established. These data have been used for modeling by Levy et al. [4] (see
their Fig. 6). Another source is the paper by Counter et al. [8] which includes
experimental data on the expected telomere lengths E(¢). The data were as-
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sembled, plotted and reproduced by the mathematical model in the paper by
Arino et al. [5]. Our plots in Fig. 3 qualitatively match the data.

The medical relevance of the process of telomere loss was already mentioned
in the Introduction in the context of immortalization of cancer cells. Other
important examples include shortening of telomeres in T lymphocytes in Type I
diabetes (Jeanclos et al. [9]) and in some subsets of T lymphocytes in AIDS
(Wolthers et al. [10]). These observations may reflect an increased turnover of
lymphocytes in these diseases (i.e. more divisions of lymphocytes leading to
shortening of telomeres) or, in case of Type I diabetes, inherited shorter telo-
meres contributing to the onset of disease. In healthy people, older individuals
tend to have lymphocytes with shorter telomeres than younger individuals
(Weng et al. [11]).

Our study does not include the case in which the enzyme telomerase, capable
of restoring telomere endings, is activated (as presumably in immortal cells).
Modeling telomerase action would lead to bidirectional branching random
walks with different asymptotic properties.

The model of telomere loss can be formulated as a population dynamics
model with the so called inherited property (Arino et al. [12]). A formulation of
this latter model in the terms of branching processes can be found in Ref. [13].
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Appendix A. Proofs

Proof of Theorem 1. First consider m,(c"g Pick a O-type cell in the nth generation
and follow its family tree backwards. This will consist of a number of 0-type
cells and eventually a first 1-type cell. Assume that this occurs in generation j.
The probability that this 1-type cell initiates a cell-line of 0’s that still exists in
the nth generation is p"~/~'. Since there are m,&’ )1 cells in the jth generation, the
expected number of 0-type cells in the nth generation is

-1

m,(:?) = m,&’)l P!

3

fu
and since m{} = (,/,) we obtain
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n—1 .
n J i
= ()7

By reversing the order of summation we may write this as

n—k .
n n—i i
=3 (7))

i=0

and since (1) ~ n*1/(k — 1)l as n — oo,
k-1
() 1 n
Mo ™~ T~ T

(I1-p) (k=1
From this we obtain the asymptotics of M, ((¢). First note that, for any N,

. ) o (a)"
IWMWFEw”Z%ﬁ%

—00
n>N

and hence we can choose N large and replace m,((”g by 1/(1 — p)r*=1/(k —1)! in
Eq. (9). We obtain

1 —ot 1 k—1 (at)n
Mo~y w— i
1 (at)k—l » (at)n—k+l 1 (O(t)k_l
“a-p) -1 Z(an DT (T =p) (k=D

as t — oo.
Note. To see that this is not an exact formula, let us compute M; () ex-
plicitly for some values of k. For k=1 we get

1

mily =1, (1= #")
and hence

Mialt) = e (e = 1= (@ = 1) = (1 =),
And for k=2:

n

" i n(l=p)—p+p!
m273:Z/P = ( ) 3
=1 p(1-p)

which yields

Mzﬂo(t) = 1 ip <Oﬁl‘+ 1 1p(e_“(l—P)t o 1))
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Proof of Theorem 2. First note that, if i > k, m"’, = (!)¢" and hence
(0g0)" e (o)™ (ngt)*
M 4 (8) = * = #l=q)t, Al
() == e 2(71—1{)! Wo© (A1)
(1) In this case the formula above is valid also for i=k.
(i1) Here note that

i = (k—l)qj

and that the probability that a 1-type cell in the jth generation initiates a line of
0O-types that is still alive in the nth generation is gp"~/~'. Hence

) n—1 j 4 . n—1 j P n—j—1
=5 (2 )= () (8)
Zl k—1 Z k—1)\q

J=k— Jj=k—1

Again reversing the order of summation yields

n—k . i
(n) n n—1 p
= () (0)
i=0 k=1 q

and the asymptotics

m n) ~ qn nk_l q
T k=1l -p
As above we can replace m,({”()) by its asymptotics in Eq. (9) to obtain

1 n—k+1 k—1

g (0q)" i~ (aq1) g ()" i
Mk’o(t)wﬂme Xn:(n—kJrl)!Nq—p(k—l)!e( -

(ii1) First recall the identity

k
q —a(1—p)t

~—— ¢ . A2

(P—) (A.2)



90 P. Olofsson, M. Kimmel | Mathematical Biosciences 158 (1999) 75-92

Note. If p=1and k=1 we get M,(t) — ¢q/(1 — g) which makes sense since
the number of 0-types then will be equal to the number of surviving 1-types
which is geometric including 0 with success probability 1 — ¢. For k=2 we get
(¢/(1 — q))* where the second factor is the mean number of I-types stemming
from a 2-type; this is also geometric including 0 and hence the mean is

q/(1 — q). For general k we get (¢/(1 —q))".

Proof of Theorem 3. The proof is based on the following Tauberian theorem in
Ref. [14].

Theorem A.1. Let H be a non-decreasing function such that the Laplace—Stieltjes
transform H(s) = [ e™H(du) < oo for s > 0. Then

A
H(s) ~ o ass— 0
if and only if
At

H() ~ —1 a5t — .
(¥) NCE) ast— oo

For the proof of Theorem 3, first let j = £ — 1. Then

o0

Mia(t) = n(1=G) G (1)

=336 - 6 )

i=1 n=i

= i N£
—;G 0~

as t — oo, by the renewal theorem in Ref. [15]. That this theorem applies can be
realized directly: the k-type cells split according to a (delayed) renewal process
and at each renewal an infinite line of (X — 1)-type cells is initiated since there is
no death. Hence the number of (k — 1)-type cells at time ¢ is exactly the number
of such renewals up to time ¢.

In the absence of cell death, clearly M;,_;(¢) is non-decreasing and
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Mk?k,l(s) = /Ci‘ka"k,l(du) = Z/e’”‘G*”(du)
0 n=1

>, G
=366 = Yo
n=1 1 - G(S)
for s > 0 unless G is defective (concentrated at 0). Hence, Theorem A.1 above
applies and
M kk—1 (S) ~ E
as s — 0.
Now, consider M, ;(¢) for an arbitrary j. We obtain

o0

M(5) = [e My (aw

- Z'(k f]) 7ew(1 — G) * G (du)

n=k

— (1-G(s)) i{(kf )GW

o0

J

n=k—j J
A (s)"
=(1-G(s) ————
(1= 66) 7
= M] (S)k_j
Hence
— 1
My y(s) ~ sk

as s — 0 and applying Theorem A.l again yields

()~ b
M (t) v~ ——
I i = )]
as t — oo.
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