General Branching Processes and Cell Populations

Peter Olofsson

Trinity University
Mathematics Department

August 25, 2012
Bienaymé–Galton–Watson process, discrete time, synchronized generations
General (Crump–Mode–Jagers) branching process, continuous time, overlapping generations, point process.
Galton–Watson

- Number of children X, random variable on $\{0, 1, 2, \ldots\}$
- Size of nth generation:
 \[
 Z_n = \sum_{k=1}^{Z_{n-1}} X_k, \ n = 1, 2, \ldots \quad (Z_0 \equiv 1)
 \]

- Growth rate: m^n, where $m = E[X]$

- Convergence: $\frac{Z_n}{m^n} \to W$ as $n \to \infty$.
General

- Reproduction process, ξ: point process on $[0, \infty)$

$$\xi(a) = \int_0^a \xi(dt) = \text{number of children up to age } a$$
General

- Reproduction process, ξ: point process on $[0, \infty)$

$$\xi(a) = \int_0^a \xi(dt) = \text{number of children up to age } a$$

- Mean reproduction process $\mu(a) = E[\xi(a)], \mu(dt) = E[\xi(dt)]$
General

• Reproduction process, ξ: point process on $[0, \infty)$

$$\xi(a) = \int_{0}^{a} \xi(dt) = \text{number of children up to age } a$$

• Mean reproduction process $\mu(a) = E[\xi(a)], \mu(dt) = E[\xi(dt)]$

• Growth rate: $e^{\alpha t}$, where Malthusian parameter α solves the equation

$$\hat{\mu}(\alpha) = \int_{0}^{\infty} e^{-\alpha t} \mu(dt) = 1$$
Galton–Watson process: $\xi(dt) = X\delta_1(dt)$,

$$\xi(a) = \begin{cases} 0 & \text{if } a < 1 \\ X & \text{if } a \geq 1 \end{cases}$$

In this case,

$$\int_0^\infty e^{-\alpha t} \mu(dt) = me^{-\alpha} = 1$$

gives $\alpha = \log m$ and $e^{\alpha t} = m^n$.
Random characteristics

- $\chi(a)$: contribution of an individual at age a
Random characteristics

• $\chi(a)$: contribution of an individual at age a

• χ-counted population

$$Z_t^\chi = \sum_{x \in I} \chi_x (t - \tau_x)$$

where

$I =$ set of all individuals
$\tau_x =$ birth time of individual x
Examples:

1. $\chi(a) = I_{R^+}(a)$ – indicator of being born, $Z_t^\chi = \text{number of individuals born before } t$
Examples:

1. \(\chi(a) = I_{R_+}(a) \) – indicator of being born, \(Z^\chi_t \) = number of individuals born before \(t \)

2. \(\chi(a) = I_{[0,L)}(a) \) – indicator of being alive, \(Z^\chi_t \) = number of individuals alive at time \(t \)
Convergence result

As \(t \to \infty \),

\[
e^{-\alpha t} Z_t^\chi \to c \, W
\]

where \(W \) is a random variable and

\[
c = \int_0^\infty e^{-\alpha t} E[\chi(dt)]
\]
Convergence result

As \(t \to \infty \),

\[
e^{-\alpha t} Z_t^\chi \to c \, W
\]

where \(W \) is a random variable and

\[
c = \int_0^\infty e^{-\alpha t} E[\chi(dt)]
\]

Thus:

\[
\frac{Z_t^\chi_1}{Z_t^\chi_2} \to \frac{c_1}{c_2}
\]

Asymptotic stability, for example stable age distribution.
Biological relevance

- Yeast (S. cerevisiae), asymmetric division, finite lifespan.

(Wikipedia)

Prion dynamics (O. and Sindi, Math Pop Studies, 2012)

Telomere dynamics (O. and Bertuch, J Theor Biol, 2010)
Biological relevance

- Yeast (S. cerevisiae), asymmetric division, finite lifespan.

(Wikipedia)

Biological relevance

- Yeast (S. cerevisiae), asymmetric division, finite lifespan.

Cell cycle desynchronization

Of interest: Fraction of cells in S phase over time in an initially synchronized population.
Experimental data

(Chiorino, Metz, Tomasoni, Ubezio, *J Theor Biol*, 208, 2001)
Cells forced to start in S phase (synchronization). Fraction of cells in S phase over time:
Previous models

Deterministic model
Previous models

Deterministic model

Heuristic stochastic model
Branching process model

O. and Thomas “Ollie” McDonald (Trinity Univ math major, Rice Univ Ph.D. student)

- Cell cycle time \(L = G_1 + S + G_2 + M \), cdf \(F \)
Branching process model

O. and Thomas “Ollie” McDonald (Trinity Univ math major, Rice Univ Ph.D. student)

- Cell cycle time \(L = G_1 + S + G_2 + M \), cdf \(F \)

- Reproduction by splitting, \(\xi(dt) = 2\delta_L(dt), \mu(dt) = 2F(dt) \)
Branching process model

O. and Thomas “Ollie” McDonald (Trinity Univ math major, Rice Univ Ph.D. student)

• Cell cycle time $L = G_1 + S + G_2 + M, \text{cdf } F$

• Reproduction by splitting, $\xi(dt) = 2\delta_L(dt), \mu(dt) = 2F(dt)$

• Malthusian parameter: $2 \int_0^\infty e^{-\alpha t} F(dt) = 1$
Random characteristic counting cells in S phase:

$$\chi_S(a) = I\{G_1 \leq a \leq G_1 + S\}$$
Random characteristic counting cells in S phase:

$$\chi_S(a) = I\{G_1 \leq a \leq G_1 + S\}$$

Random characteristic counting cells alive:

$$\chi(a) = I\{L > a\}$$
Random characteristic counting cells in S phase:

\[\chi_S(a) = I\{G_1 \leq a \leq G_1 + S\} \]

Random characteristic counting cells alive:

\[\chi(a) = I\{L > a\} \]

Fraction of cells in S phase: \(Q(t) := \frac{Z_t \chi_s}{Z_t \chi} \rightarrow \text{constant} \)
Path to the limit?

Initial synchronization?
Expected value:

\[E[Q(t)] \approx \frac{E[Z_t^s]}{E[Z_t^X]} \]
Expected value:

\[E[Q(t)] \approx \frac{E[Z_t^{\chi_s}]}{E[Z_t^{\chi}]} \]

Our time zero: time \(\tau = G_1 + T \) in the process, \(T \) on \([0, S]\).
For any characteristic

\[Z_t^\chi = \chi(t) + Z_{t-L}^\chi(1) + Z_{t-L}^\chi(2) \]

\[L = \text{lifetime of ancestor} \]
For any characteristic

\[Z_t^\chi = \chi(t) + Z_{t-L}^\chi(1) + Z_{t-L}^\chi(2) \]

\(L = \) lifetime of ancestor

\[E[Z_{\tau+t}^\chi] = E[\chi(\tau + t)] + 2E[Z_{\tau+t-L}^\chi] \]

\[= E[\chi(\tau + t)] + 2E[Z_{t-R}^\chi] \]

\(R = L - \tau \) remaining lifetime of ancestor
\[E[Z_{\tau+t}^\chi] = E[\chi(\tau + t)] + 2E[Z_{t-R}^\chi] \]
\[E[Z_{\tau+t}^\chi] = E[\chi(\tau + t)] + 2E[Z_{t-R}^\chi] \]

For \(\chi \):

\[E[\chi(\tau + t)] = P(R \geq t) \]
\begin{align*}
E[Z^\chi_{\tau+t}] &= E[\chi(\tau+t)] + 2E[Z^\chi_{t-R}] \\
\text{For } \chi: \\
E[\chi(\tau+t)] &= P(R \geq t) \\
\text{For } \chi_S: \\
E[\chi_S(\tau+t)] &= P(S - T \geq t) \\
S - T &= \text{remaining time in S phase}
\end{align*}
\begin{align*}
E[Q(\tau + t)] & \approx \frac{P(S - T \geq t) + 2 \int_{0}^{t} E[Z^\chi_{S}] F_R(dr)}{P(R \geq t) + 2 \int_{0}^{t} E[Z^\chi_{t-r}] F_R(dr)}
\end{align*}

For given phase time distributions, we can find distributions of \(S - T \) and \(R \) using stable population theory.
\[
E[Q(\tau + t)] \approx \frac{P(S - T \geq t) + 2 \int_0^t E[Z^X_{t-r}F_R(dr)]}{P(R \geq t) + 2 \int_0^t E[Z^X_{t-r}F_R(dr)]}
\]

For given phase time distributions, we can find distributions of \(S - T \) and \(R \) using stable population theory.

Phase time distribution parameters from data (Ubezio, personal communication), assume gamma distributions. Run model.
Note: Curve *not fitted* to data!
Article:

O. and McDonald, A stochastic model of cell cycle desynchronization, *Mathematical Biosciences*, 2010

Acknowledgments:

NIH grant 1 R15 GM093957-01

Paulo Ubezio, Mario Negri Institute for Pharmacological Research, Milano