Math Stat, solutions to HW2

1(a) The mean in the unif[f, 1] is (¢ +1)/2 and as the sample mean has the
same mean as the distribution, E[X] = (0 + 1)/2. Thus, § = 2E[X] — 1
which suggests the unbiased estimator # = 2X — 1 (this is the MOME). To

show that it really is unbiased, note that
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The variance is
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which gives the standard error
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We have n = 5, get X = —0.22 which gives § = 2(—0.22) — 1 = —1.44. The
estimated standard error is

)

—~

1—(—1.44)
0= ——F7——"
0 V15

(b) The better estimator should be based on the minimum X). If we have
n observations, on average they are equidistantly spaced over the interval
0, 1], dividing it into n+ 1 subintervals, each of length (1—0)/(n+1). Thus,
the expected value of the minimum should be
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which can be shown explicitly by finding the pdf of X(;) and the usual inte-

gration. This observation suggests the unbiased estimator
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which by analogy with the uniform [0, 6] example from class ought to be more
efficient than the estimator from (a) (and this can also be proved strictly by

computing its variance). Note that 6 can be any number less than 1, includ-
ing negative numbers.



2. By the variance formula, Var[s] = F[s?| — E[s]* = 0% — E[s]* and since
Var[s] > 0 we get 02 — E[s]> > 0, that is, E[s] < 0.



