
Mathematical Statistics, solutions to test 2

1(a) We have n = 1166, p̂ = 612/1166 = 0.52 and with q = 0.95 we get
z = 19.6 and the interval

p = 0.52± 1.96

√
0.52 · 0.48

1166
= 0.52± 0.029 (0.95)

As the interval includes 0.5, there is not support for the claim.

(b) The margin of error for a 95% confidence interval with sample size n
equals

1.96

√
p̂(1− p̂)

n

so if we want this ≤ 0.01 we get the equation

1.96

√
p̂(1− p̂)

n
= 0.01

which gives

n =
1.962p̂(1− p̂)

0.012

The worst-case scenario (maximal margin of error) is if p̂ = 0.5 and this gives

n =
1.962 · 0.25

0.012
= 9604

Using the estimate from (a) gives

n =
1.962 · 0.52 · 0.48

0.012
= 9589

Note that the answer varies depending on how you round off.

(c) Test H0 : p = 0.5 vs. HA : p > 0.5. Recall that the null hypothesis
should specify one parameter value (we could state it as H0 : p ≤ 0.5 but
need to use p = 0.5 in the calculations) and that it is the alternative that
you are trying to prove.



2(a) After a vigorous discussion in class, the answer is that it depends on
how we construct our confidence intervals to draw the conclusions. If we do a
lower-bounded interval of the type µ ≥ X̄− ts/

√
n and issue a warning when

the latter number is greater than c, we should decrease the confidence level
to get a shorter interval and thus more warnings. If we instead to an upper-
bounded interval of the type µ ≤ X̄ + ts/

√
n and issue a warning when this

is greater than c (issue an “all clear” statement when the confidence interval
is entirely below c), we should increase the confidence level to get a longer
interval and thus more warnings.

(b) In (a) we are dealing with a better-safe-than-sorry scenario and don’t
care if we warn too often as long as we miss a few real cases as possible. The
opposite of (a) would be any situation in which the consequences of issuing
a warning are more dire than failing to issue one, for example a similar sit-
uation but one where health risks are not severe but issuing a warning may
lead to production shut-down which may be costly and impractical.

3(a) As the probability a given poll captures the true rating equals the con-
fidence level 0.95, the probability that it does not is 0.05.

(b) The probability that all polls capture the true ratings is 0.9519 so the
probability that at least one misses a true rating is

1− 0.9519 ≈ 0.62

4(a) False, the denominator is not of the form
√

χ2
r/r. If we instead had

T = X/|Y |, this would be t1.
(b) True by HW5, turn-in problem 1.
(c) False,

√
X is always nonnegative but the t distribution ranges over all

real numbers.
(c) True, the denominator equals

√
V 2/1 where V 2 has a χ2

1 distribution.

(d) True, S = ((X + Y )/
√

2)2 and (X + Y )/
√

2 ∼ N(0, 1) so S ∼ χ2
1.

5(a) Lk = 2zσ/
√

n and Lu = 2ts/
√

n.
(b)

P (Lu ≤ Lk) = P (ts ≤ zσ) = P

(
(n− 1)s2

σ2
≤ (n− 1)z2

t2

)
= Fn−1

(
(n− 1)z2

t2

)



(c) Intuitively, for large n we will have t ≈ z and s ≈ σ so the intervals will
have about the same length. Thus, which one is wider is a coin toss and the
probability should approach 1/2.

More formally, since the chi-square distribution is the sum of i.i.d. random
variables, it has an approximate normal distribution by the Central Limit
Theorem. As the mean in the chi-square distribution equals its degrees of
freedom, we have approximately a normal distribution with mean n− 1 and
ask for the probability that it is less than n− 1 which, by symmetry, equals
1/2. A full proof would require results about uniform convergence in the
CLT which we usually don’t discuss in undregraduate probability.


