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Preface

This book is about those little numbers that we just cannot escape. Try to
remember the last day you didn’t hear at least something about probabilities,
chance, odds, randomness, risk, or uncertainty. I bet it’s been a while. In
this book, I will tell you about the mathematics of such things and how it
can be used to better understand the world around you. It is not a textbook
though. It does not have little colored boxes with definitionor theorems, nor
does it contain sections with exercises for you to solve. My main purpose is
to entertain you, but it is inevitable that you will also learn a thing or two.
There are even a few exercises for you, but they are so subtly presented that
you might not even notice until you have actually solved them.

The spousal thanks is always more than a formality. I thankAlkmh́nh
for putting up with irregular work hours and everything elsethat comes with
writing a book, but also for help with Greek words and for reminding me
of some of my old travel stories that you will find in the book. Iam deeply
grateful to Professor Olle Häggström at Chalmers University of Technology in
Göteborg, Sweden. He has read the entire manuscript, and his comments are
always insightful, accurate, and clinically free from unnecessary politeness.
If you find something in this book that strikes you as particularly silly, chances
are that Mr.Häggström has already pointed it out to me but that I decided to
keep it for spite. I have also received helpful comments fromJohn Haigh at the
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University of Sussex, Steve Quigley at Wiley, and from an anonymous referee.
Thanks also to Kris Parrish and Susanne Steitz at Wiley, to Sheree Van Vreede
at Sheree Van Vreede Publications Services for excellent copyediting, and to
Amy Hendrickson at Texnology Inc. for promptly and patiently answering
my LaTeX questions.

A large portion of this book was written during the tumultuous Fall of
2005. Our move from Houston to New Orleans in early August turned out
to be a masterpiece of bad timing as Hurricane Katrina hit three weeks later.
We evacuated to Houston, and when Katrina’s sister Rita approached, we took
refuge in the deserts of West Texas and New Mexico. Sandstorms are so much
more pleasant than hurricanes! However, it was also nice to return to New
Orleans in January 2006; the city is still beautiful, and itschargrilled oysters
are unsurpassed. I am grateful to many people who housed us and helped us in
various ways during the Fall and by doing so had direct or indirect impact on
this book. Special thanks to Kathy Ensor & Co.at the Department of Statistics
at Rice University in Houston and to Tom English & Co.at the College of the
Mainland in Texas City for providing me with office space. Finally, thanks
to Professor Peter Jagers at Chalmers University of Technology, who as my
Ph.D. thesis advisor once in a distant past wisely guided me through my first
serious encounters with probabilities, those little numbers that rule our lives.

PETER OLOFSSON

www.peterolofsson.com

San Antonio, 2014
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Beyond Probabilities: What to Expect

GREAT EXPECTATIONS

In the previous chapters, I have several times talked about what happens “on
average” or what you can “expect” in situations where there is randomness
involved. For example, on page??, it was pointed out that the parameter
λ in the Poisson distribution is theaverage number of occurrences. I have
mentioned that each roulette number shows up onaverage once every 38
times and that you canexpect two sixes if you roll a die 12 times. The time has
come to make this discussion exact, to look beyond probabilities and introduce
what probabilists call theexpected value. This single number summarizes an
experiment, and in order to compute an expected value, you need to know all
possible outcomes and their respective probabilities. Youthen multiply each
value by its probability and add everything up. Let us do a simple example.

Roll a fair die. The possible outcomes are the numbers 1 through 6, each
occurring with probability 1/6, and by what I just described, we get

1× 1/6 + 2× 1/6 + 3× 1/6 + 4× 1/6 + 5× 1/6 + 6× 1/6 = 3.5

as the expected value of a die roll. You may notice that the term “expected”
is a bit misleading because you certainly do not expect to get3.5 when you
roll the die. Think instead of the expected value as the expected average in
a large number of rolls of the die. For example, if you roll thedie five times

9



10 BEYOND PROBABILITIES: WHAT TO EXPECT

and get the numbers 2, 3, 1, 5, 3, the average is(2+ 3+ 1+ 5+ 3)/5 = 2.8.
If you roll another five times and get 2, 5, 1, 4, 5, the average over the ten
rolls is 31/10 = 3.1. As you keep going, rolling over and over and computing
consecutive averages, you can expect these to settle in toward 3.5. I will
elaborate more on this interpretation and make it precise inthe next chapter.
You can also think of the “perfect experiment” in which the die is rolled six
times and each side shows up exactly once. The average of the six outcomes
in the perfect experiment is 3.5, and this is the expected value of a die roll.

In the casino gamecraps, two dice are rolled and their sum recorded. What
is the expected value of this sum? The 11 possible values are 2, 3,..., 12, but
these are not all equally likely so we must figure out their probabilities. In
order to get 2, both dice must show 1 and the probability of this is 1/36. In
order to get 3, one die must show 1 and the other 2 and as there are two dice
that can each play the role of “one” or “the other,” there are two outcomes that
give the sum 3. The probability to get 3 is therefore 2/36. To get 4, any of
the three combinations 1–3, 2–2, or 3–1 will do, so the probability is 3/36,
and so on and so forth. The outcome 7 has the highest probability, 6/36, and
from there the probabilities start to decline down to 1/36 for the outcome 12
(consult Figure?? on page?? if you feel uncertain about these calculations).
Now add the outcomes multiplied by their probabilities to get

2× 1/36+ 3× 3/36+ · · · + 12× 1/36 = 7

as the expected sum of two dice. This time, the expected valueis a number
than youcan get as opposed to the 3.5 with one die. Unfortunately, it still does
not mean that you actually expect to get 7 in each roll or you would expect to
leave the casino a wealthy person, 7 being a winning number incraps. It only
refers to what you can expect on average in the long run.

Note that the expected value of the sum of two dice, 7, equals twice the
expected value of the outcome of one die, 3.5. This is no coincidence. Ex-
pected values have the nice property of being what is calledadditive, which
means that we did not have to do the calculation we did above for the two
dice. Instead, we could just have said that as we roll two diceand each has
the expected value 3.5, the expected value of the sum is 3.5+ 3.5 = 7. This
is convenient. If you roll 100 dice, you know that the expected sum is 350
without having to figure out how to combine the outcomes of 100dice to get
the sum 298 or 583 (but feel free to try it, at least it will keepyou out of
trouble).
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Expected values are more than additive; they are alsolinear, which is a
more general concept. In addition to additivity, linearitymeans that if you
multiply each outcome by some constant, the expected value is multiplied
by the same constant. For example, roll a die and double the outcome. The
expected value of the doubled outcome is then twice the expected value of the
outcome of the roll, 2× 3.5= 7. Note that the expected values are the same
when youdouble the outcome ofone roll and when youadd the outcomes
of two rolls. The actual experiments are different though. In the first case,
the possible values are the 6 even numbers 2, 4,..., 12; in thesecond, the 11
numbers 2, 3, ..., 12.

To illustrate the convenience of linearity, suppose that you construct a ran-
dom rectangle by rolling three dice. The first determines oneside, and the sum
of the other two determines the other side. What is the expected circumference
of the random rectangle? There are 216 different outcomes ofthe three dice.
The smallest possible rectangle measures one by two, has circumference 6,
and probability 1/216 because there is only one way to get it:(1,1,1). The
largest rectangle measures 6 by 12, has circumference 36, and likewise prob-
ability 1/216. In between these, there is a range of possibilities withdifferent
probabilities. For example, you can get circumference 8 in three different
ways: (1,1,2), (1,2,1), and(2,1,1), so circumference 8 has probability 3/216
(these three rectangles have dimensions 1×3, 1×3, and 2×2, respectively). To
compute the expected circumference, however, you do not need to figure out
all these outcomes and their probabilities. Simply note that the circumference
is twice one side plus twice the other; that the sides have expected lengths
3.5 and 7, respectively; and apply linearity to get the expected circumference
2× 3.5+ 2× 7 = 21. Linearity is a very convenient property indeed.

You may have noticed that the expected values in our examplesthus far have
been right in the middle of the range of possible outcomes. The midpoint of
the numbers 1, 2,..., 6 is 3.5; the midpoint of 2, 3,..., 12 is 7; the midpoint
of 100, 101,..., 600 is 350; and the midpoint of the rectanglecircumference
values is(6 + 36)/2 = 21. All these examples have in common that the
probability distributions aresymmetric. If you roll one die, start from 3.5,
which is in the middle and step outward in both directions: 3 and 4 have the
same probabilities; 2 and 5 have the same probabilities; and1 and 6 have the
same probabilities. Of course, in this particular case,all outcomes have the
same probabilities, 1/6, so it may be more interesting to look at the sum of
two dice instead. Here, 7 is in the middle and has probability6/36. One step
out we find 6 and 8, which both have probability 5/36. Continue like this
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until you hit the last two outcomes 2 and 12, each with probability 1/36. So
in these cases, you could actually have found the expected value simply by
computing the average of the possible outcomes: The averageof 1, 2,..., 6 is
3.5, and the average of 2, 3,..., 12 is 7. This is not always thecase though, and
here is another dice example to prove it. Roll two dice and record thelargest
number. What is the expected value?

The largest number can be anything from 1 to 6, but these are not equally
likely, nor are the probabilities distributed symmetrically, and it is probably
clear that the largest value is expected to be more than 3.5. To find the expected
value, we need to first compute the probabilities. The only case in which the
largest number equals 1 is when both dice show 1, and this has probability
1/36. Three cases give the largest number 2: 1–2, 2–1, and 2–2, and the
probability is thus 3/36. Continue like this until you reach 6, which is the
largest number in 11 cases and has probability 11/36 (you might again find it
helpful to consider Figure??). If you are into math formulas, the probability
that the largest number equalsk is (2× k − 1)/36 fork ranging from 1 to 6.
At any rate, the expected value is now computed as

1× 1/36+ 2× 3/36+ · · · + 6× 11/36≈ 4.5

rounded to one decimal. I leave it up to you to demonstrate that the expected
smallest number is≈ 2.5 (obvious without calculations?).

Here is another example of asymmetric probabilities, whichalso involves
negative numbers in a natural way. You play roulette and bet $1 on the number
29. What is your expected gain? There are two possibilities:With probability
1/38, number 29 comes up and you win $35, and with probability 37/38,
some other number comes up and you lose your dollar. If we agree to describe
a loss as a negative gain, your gain can therefore be either 35or −1. There
is no problem with having a negative number, and the expectedvalue of your
gain is computed just like before:

35× 1/38+ (−1) × 37/38 = −2/38≈ −0.0526

an expected loss of about 5 cents. Again we have a case in whichthe expected
value cannot actually occur but must be interpreted as a long-term average. In
the long run, each number comes up once every 38 spins, so assume that this
is exactly what happens; the numbers come up perfectly in order: 00, 0, 1, 2,
..., 38 and you bet $1 on 29 each time, wagering a total of $38. You will then



GREAT EXPECTATIONS 13

lose $37 and win $35 (and keep the dollar you bet on 29), a totalloss of $2
out of the $38.

You often see people at the roulette tables betting on several different num-
bers, sometimes covering almost the entire table. Althoughthis certainly
increases your chances of winning in a single spin, it does nothing to improve
your expected long-term losses. Indeed, you lose 5 cents perdollar on each
single number, so if you for example bet $1 on each of ten different numbers,
additivity of expected values tells you that you can expect to lose on average
50 cents. Regardless of betting strategy, the casino takes on average 5 cents
out of every dollar you risk, which does not sound like much but is enough to
give them a very good profit.

As an exercise, let us compute the expected gain in the more innocent
chuck-a-luck. In this game, you wager $1, three dice are rolled, and your win
depends on the number of 6s. If there is one 6, you win $1; if there are two
6s, you win $2; and if there are three 6s, you win $3. Only if there are no 6s
do you lose your $1. On page??, we saw that the probability that you win
something is 0.42. Thus, you lose your $1 with probability 0.58, but if you
win, you may win more than $1 so it is not immediately obvious that the game
is stacked against you. The probabilities to get zero, one, two, and three 6s
are

P(no 6s) = (5/6)3 = 125/216 ≈ 0.58
P(one 6) = 3× 1/6× (5/6)2 = 75/216 ≈ 0.35
P(two 6s) = 3× (1/6)2 × 5/6 = 15/216 ≈ 0.07
P(three 6s) = (1/6)3 = 1/216 ≈ 0.005

where the “3” in the two middle probabilities is there because the one die that
shows different from the other can be any of the three (in fact, the number of
6s has a binomial distribution, which we discussed in Chapter 1). The decimal
numbers above do not add up to 1 as they should, but that is onlybecause they
are rounded. Let us now compute the expected gain. Your gain equals the
number of 6s if you get any, and otherwise, it is−1. The expected gain in
chuck-a-luck is

(−1) × 125/216+ 1× 75/216+ 2× 15/216+ 3× 1/216≈ −0.08

that is, an expected loss of about 8 cents per $1 wagered. Froma financial
point of view, you’re worse off than at the roulette table. Again you can
think of what would happen in the ideal run where each of the 216 possible
outcomes of the three dice comes up exactly once. You then win$3 once, $2
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15 times, $1 75 times, and lose $1 125 times, for a total loss of$17 of your
$216 wagered.

Suppose that you try another kind of gambling: stock investments. A friend
tells you that a particular mutual fund is equally likely to either go up 50%
or down 40% each year for the next few years to come. If you invest $1,000,
how much can you expect to have after two years?

First consider one year. After the first year you are equally likely to have
$1,500 or $600, and the average of these is $1,050. In general, the average of a
50% gain and a 40% loss is a 5% gain, so you can expect to gain 5% each year.
After two years, your expected fortune is therefore $1,000× 1.05× 1.05=

$1,102.50. On the other hand, as your fortune is equally likely to increase as it
is to decrease each year and there are two years, you can expect it to go down
one year and up the other. Regardless of which of these years that comes first,
your fortune will be $1,000× 1.50× 0.60= $900. This seems conflicting.
How can you expect your fortune both to increase and to decrease?

It depends on what you mean by “expect.” The expected value ofyour
fortune after two years is certainly $1,102.50. There are four equally likely
scenarios for the two years: up–up, up–down, down–up, and down–down,
leading to fortunes of $2,250, $900, $900, and $360, respectively, and the
average of these is $1,102.50. However, if you instead compute the expected
number of “good years,” this number is one and themost likely scenario is
one good and one bad year, which makes $900 the most likely value of your
fortune. The most likely value, in this case $900, is called themode or modal
value. It is up to you which of the two measures of your fortune you think
makes most sense. Note that although yourexpected fortune increases, the
actual fortune only increases if there are two good years of which there is a
25% chance. If you compare this investment scheme with one that gives a
fixed 5% interest each year, the two are on average equally good and equally
likely to be ahead after a year. However, the fixed interest scheme has a 75%
chance of being ahead of the mutual fund after two years. If they compete, it
is a fair game year by year but not over two years, somewhat paradoxically.
And as the years keep passing by, your expected fortune increases by 5% each
year, but under the most likely scenario your fortune instead decreases by 10%
every two years. After 20 years, your initial investment of $1,000 has grown
to $2,653 as measured by expected returns and fallen to $349 under the most
likely scenario. In order for your actual fortune to increase after 20 years, you
need at least 12 good years, which has a probability of about 25%.
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The rates in the example may not be very realistic but serve asa drastic
illustration to the general principle that a decrease is more severe than an
increase. For example, if a 50% gain is followed by a 50% loss (or vice
versa), this leaves you with a net loss of 25%. The combination of a 10% gain
and a 10% loss results in a net loss of 1%, and so on. If equally sized annual
gains and losses are equally likely, your expected fortune remains unchanged,
but in order for the actual fortune not to decrease, you need more good years
than bad. This is still true even if the annual gains tend to beslightly larger
than the annual losses (as in the extreme example above).

When it comes to risking money in order to make money, you mustof
course weigh risk against benefit and considering only the expected gain is
not sufficient. You may buy a lottery ticket for the slim chance to win big
even though you face an expected loss. But if I offer you the chance to bet
$1,000 on a coin toss and pay you $1,100 if you get heads, you might not
want to play even with the expected gain of $50. In the long runyou would
certainly ruin me, but for a single bet you might not be willing to risk $1,000
for the chance of winning that extra $100. You face similar concerns when it
comes to investing your money. Should you take a risk on highly uncertain
but potentially very profitable stocks, or should you go withthe lower risks
of mutual funds or bonds? The expected return should play a role in your
decision but should definitely not be the sole criterion.Let us look closer at
the mathematics of stock markets.

OPTIONS...

EFFICIENT MARKET HYPOTHESIS

OPTIONS, EUROPEAN, AMERICAN

You have $100 to invest and have three choices: (a) a risk-free bond, (b) a
stock currently trading at $100, or (c) an option to buy the same stock. The
main question is how much the option should cost and the main assumption
is that your expected gain is the same regardless of what you choose to do,
assuming this is what the efficient market hypothesis implies. Let us first
consider (a), the risk-free bond, and assume the annual interest rate is 5%.
Thus, if you buy the bond, you will have $105 a year later. Next, consider (b),
the stock that is currently trading at $100. To simplify things considerably,
we will assume that the stock price can only take on 2 different values after a



16 BEYOND PROBABILITIES: WHAT TO EXPECT

year: $150 or $50. Although completely unrealistic, the assumption is made
to simplify the calculations and illustrate an idea; we willlater consider more
realistic scenarios. It wold be tempting to assume the stockequally as likely
to increase as to decrease, thus making its expected value after a year the same
as its current price, $100, but remember that we have assumedthat we will do
as well with the stock as with the bond, on average. Thus, the expected value
of the stock after a year is $105 and if we letp denote the probability of an
increase, we get the equation

100 × p + 50 × (1 − p) = 150

which we can solve forp to getp = 0.55. Thus, there is a 55% chance that
the stock increases in value to $150 and a 45% chance that it decreases to $50.
With these probabilities, you do as well buying the bond as the stock.

What, then, about (c), the option? How much should you pay forit in order
to have the same expected fortune of $105 a year later? If you pay $D for the
option, after a year you will have a fortune of $(150−D) if the stock has gone
up so that you exercise the option to buy the stock. There is a 55% chance
of this scenario. If the stock goes down, of which there is a 45% chance, you
do not exercise the option and your fortune is $(100 − D). We now get the
equation

(150 − D) × 0.55 + (100 − D) × 0.45 = 105

which has the solutionD = 22.5. Thus, the fair value of the option is $22.50.
If somebody offers the option at a lower price, you should buyit rather than
the stock itself for a higher expected yield.

So what about this unrealistic assumption that the stock canonly take on
two possible values after a year? It’s all about time scales.Note that a change
from $100 to $150 is a 50% increase, and a change from $100 to $50 is a 50%
decrease. Now, rather than a year, consider changes over two6-month periods
such that we can still get a 50% increase or decrease after a year. If we want
to keep percentual changes constant over the two 6-month periods, it turns out
that we must let increases be by about 22.5% and decreases by about 29.3%.
Thus, after the first 6-month period, the stock is worth either $122.50 (22.5%
increase) or $70.70 (29.3% decrease). In the first case, if there is another
22.5% increase, the stock is worth $150 (rounded to the nearest dollar), a 50%
increase over the year. In the case of two consecutive drops in price, it is worth
70.7% of $70.70 which is $50 (again rounded), a 50% decrease over the year.
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Note that we now also have the possibility of an increase followed by
a decrease, or vice versa, over the two 6-month periods. In each of these
cases, the stock will be worth about $87 after a year (100 × 1.225 × 0.707 =

86.61). Thus, we now have 3 possible values after a year rather than2, and
by choosing probabilities carefully, we can makje the expected value equal
to the $105 we would get with the risk-free bond. Now, 3 is incrementally
better than 2 but still, of course, highly unrealistic. But you understand where
this is going. Instead of 6-month periods, consider months.Or weeks. Or
days, hours, minutes, seconds, milliseconds, and so on until you can imagine
(mathematicians are good at this) that the stock price movescontinuously in
time, in such a way that the expected value after a year is $105. Here we get
into the highly advanced territory ofstochastic differential equations which is
the necessary environment for the famous (some would say infamous)Black-
Scholes formula for option pricing.

Something about transaction costs?

BLOOD AND THEORY

END OF RED TEXT
Careful consideration of expected values can save time and money as the

next example illustrates. During World War II, millions of American draftees
had their blood drawn to be tested for syphilis, a disease that was expected to
be detected in a few thousand individuals. Analyzing the blood samples was
a time-consuming and expensive procedure, and a Harvard economist, Robert
Dorfman, came up with a clever idea. Instead of testing each individual, he
suggested, divide the draftees into groups, draw their blood, and mix some
blood from everybody in the group to form apooled blood sample. If the
pooled sample tests negative, the whole group is declared healthy, and if it
tests positive, each individual sample is tested separately. The point is of
course that entire groups can be declared healthy by just oneblood sample
analysis. The same idea can be used for any disease that is rare and where large
populations need to be screened. Let us look at the mathematics of pooled
blood samples.
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Denote the size of the group byn and the probability that an individual has
the disease byp.1 Additional tests must be done ifsomebody has the disease,
and becausesomebody is the opposite ofnobody, this is a case for Trick Num-
ber One. The probability that an individual does not have thedisease is 1− p,
and assuming independence between individuals, the probability that nobody
has the disease is(1 − p)n. Finally, the probability that somebody has the
disease is 1− (1− p)n, and this is then the probability that the pooled sample
tests positive; in which case,n additional individual tests are done. After the
first test, with probability(1 − p)n, there are no additional tests, and with
probability 1− (1− p)n, there aren additional tests. The expected number
of tests with the pooling method is therefore

1 + n × (1− (1− p)n)

where the first 1 is there because one test must always be done and the term
0× (1− p)n that should formally be added was ignored because it equals 0.
Now compare this expected value with then tests that are done if all samples
are tested individually. Let us put in some values, for example, n = 20 and
p = 0.01. Then 1− p = 0.99, and the expected number of tests is

1 + 20× (1− 0.9920) ≈ 4.6

which is certainly preferred over the 20 tests that would have to be done indi-
vidually. Note also that even if the pooled blood sample is positive, very little
is lost because the pooling method then requires a total of 21tests instead of
20, only one test more (and there is no need to draw more blood,what was
drawn initially is used for both pooled and individual tests). The probability of
a positive pooled blood sample is 1− 0.9920 ≈ 0.18, so if people are divided
into groups of 20, about 18% of the groups need to undergo the individual
testing. One practical concern is that if groups are too large, the pooled blood
sample might become too diluted and single individuals who are sick may go
undetected. In the case of syphilis, however, Dorfman points out that the diag-
nostic test is extremely sensitive and will detect the antigen even in very small
concentrations. Dorfman’s original article, bearing the somewhat politically

1Epidemiologists use the termprevalence for the proportion of individuals with a certain disease
or condition. For example, a prevalence of 25 in 1,000 for us translates intop = 0.025. A
related term isincidence; this is the proportion ofnew cases in some specific time-period.
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incorrect title “The detection of defective members of large populations” was
published in 1943 in theAnnals of Mathematical Statistics. The procedure
of pooling has many applications other than blood tests, forexample, tests of
water, air, or soil quality.

Let me finish with a little treat for the theory buffs. First ofall, the expected
value is commonly denoted byµ (Greek letter “mu”). The general formula
for µ is as follows. If the possible values arex1, x2, ..., and these occur with
probabilitiesp1, p2, ..., respectively, the expected value is defined as

µ = x1 × p1 + x2 × p2 + · · ·

where the summation goes on for as long as it is needed. In the case of a
die roll, the summation stops after six terms,xk equalsk and allpk equal
1/6. For another example, recall the binomial distribution from page??. This
counts the number of successes inn independent trials where each time the
success probability isp. The possible outcomes are the numbers 0, 1, ...,n,
and the corresponding probabilities were given in the formula on page??.
The expected number of successes is therefore

µ =
n∑

k=0

k ×
(

n

k

)

× pk × (1 − p)n−k

which is not completely trivial to compute. However, it is easy to guess what
it is. For example, if you toss a coin 100 times, what is the expected number
of heads? Fifty. If you roll a die 600 times, what is the expected number
of 6s? One hundred. In both cases, the expected number is the product of
the number of trials and the success probability, and this istrue in general.
Thus, the binomial distribution with parametersn andp has expected value
n × p (which as usual for expected values is not necessarily a possible actual
outcome). If you are familiar with Newton’s binomial theorem, you might be
able to show that the expression forµ above indeed equalsn × p.

GOOD THINGS COME TO THOSE WHO WAIT

There are expected values where the summation in the formulafrom the pre-
vious section goes on forever. This does not mean that it takes forever to
compute them, only that we can get an infinite sum if there is noobvious limit
on the number of outcomes. For example, if you toss a coin repeatedly and
count how many tosses it takes you to get heads for the first time, this number
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can theoretically be any positive integer. Although it is highly unlikely that
you have to wait until the 643rd toss, you cannot rule it out. There is thus an
infinite number of outcomes. I have already pointed out that probabilists do
not fear the infinite, and our notation for the expected valuein a case like this is

µ =
∞∑

k=1

xk × pk

where∞ is the infinity symbol, indicating that the sum never ends. Itis one of
the little intricacies of higher mathematics that you can add an infinite number
of terms and still end up with a finite number. The probabilitiespk must of
course eventually become very, very small. The probabilitythat you get your
first head in the 643rd toss is, for example,(1/2)643, which starts with 193 zeros
after the decimal point. In general, the probability that you get the first head in
thekth toss is(1/2)k, and the expected number of tosses until you get heads is

∞∑

k=1

k × (1/2)k = 1× (1/2) + 2× (1/2)2 + 3× (1/2)3 + · · ·

and, believe it or not, this messy expression equals 2. This is intuitively
appealing though. As heads show up on average half the time, they appear on
average every other toss and your expected wait ought to be two tosses. By
changing the success probability from 1/2 to 1/6, an even messier sum can
be shown to equal six; thus, the expected wait until you roll a6 with a die is
six rolls. And yet another change, to 1/38, reveals that each roulette number
is expected to show up once every 38 spins. In general, if you are waiting
for something that occurs with probabilityp, your expected wait is 1/p. One
of the rewards of studying probability is that mathematics and intuition often
agree in this way. Another reward is of course that math and intuition do
oftennot agree, at least not immediately, thus yielding wonderfullysurprising
results. As you have already learned, probability certainly has a complex and
contradictory charm.

There is another way to compute the expected wait until the first heads, or
6, or roulette win, a way that avoids the infinite sum. Recall how we, starting
on page??, computed winning probabilities in some racket sport problems
by considering a few different cases, one of which led back tothe starting
point, thus giving an equation for the unknown probability.We can use such
arecursive method here too. Suppose that you wait for something that occurs
with probability p and letµ denote the expected wait. In the first trial, you
either get your event of interest or you do not. If you do, the wait was one
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trial. If you do not, you have spent one trial and start over with an additional
expected wait ofµ trials, yielding a total of 1+ µ expected trials. As the first
case has probabilityp and the second1 − p, you get the following equation
for µ:

µ = p × 1 + (1− p) × (1 + µ)

= 1 + µ − p × µ

which simplifies further to the equation 0= 1 − p × µ that has solution
µ = 1/p, just like we wanted.

Let us look at a variant of the problem of waiting for something to happen.
In theSeinfeld episode “The Doll,” Jerry is very happy to find a dinosaur in a
cereal box (right after Elaine has told him he is juvenile). Let us now say that
there are ten different plastic toys to be found in that type of cereal box. In
order to get all of them, what is the expected number of boxes Jerry must buy?
This is difficult to solve directly by using the definition of expected value. In
order to do this, you would have to compute the probability that it requires
k boxes for the possible values ofk, and as there is no upper limit on these
values, this presents a tricky problem. Just try to compute the probability that
Jerry must buy 376 or 12,971 boxes.

We will do something smarter. First of all, one box is bought and contains a
dinosaur. What is the expected number of boxes Jerry must buyin order to get
a different toy? As the probability to get a different toy is 9/10, he can expect
to buy 10/9 boxes, in analogy with what I said above withp = 9/10. Once
he has gotten two different toys, he starts waiting for one different from these,
and as there are now eight remaining toys, the probability toget something
different is 8/10 and the expected number of boxes is 10/8. Next, he can
expect to buy another 10/7 boxes, then 10/6, and so on until he finally can
expect to buy 10/2 = 5 boxes to get the second-to-last toy and 10/1 = 10
boxes to get the final toy. Finally, in order to get the expected number of boxes
Jerry must buy to get all the toys, we use the additivity property of expected
values and conclude that he can expect to buy

1 + 10/9 + 10/8 + · · · 10/2 + 10/1 ≈ 29

boxes. Note that one third of these are bought in order to get the very last
toy, every parent’s nightmare. The expression above can be rewritten in a
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mathematically more attractive way as

10×
(

1 +
1
2

+
1
3

+ · · · + 1
9

+
1
10

)

where the expression in parenthesis consists of the first 10 terms of thehar-
monic series. It is a well-known mathematical result that as more and more
terms are added, the harmonic series summed up ton terms,Hn, gets close
to the natural logarithm ofn, denotedlog n (or sometimesln n). The natural
logarithm of a numberx is what the numbere (= 2.71828..., remember the
discussion on page??) must be raised to in order to getx. Thus, ifey = x,
theny is the natural logarithm ofx: y = log x.2 As n increases, the differ-
enceHn − log n approaches a number that is known asEuler’s constant and
is approximately equal to 0.58.3 We can now establish a nice general formula
for the expected number of cereal boxes if there aren different toys:

expected number of boxes≈ n × (log n + 0.58)

which for n = 10 gives 28.8, approximately 29 just like above. Ifn is
very large, we need to refine the constant 0.58; see footnote 3. This type of
problem did not start with Jerry Seinfeld; it is a classic probability problem
usually called thecoupon collecting problem and has been generalized in a
multitude of ways.

A related type of problem is the so-calledoccupancy problem. If Jerry
learns that he can expect to buy 29 boxes in order to get all thetoys and
decides to go on a cereal shopping spree and buy 29 boxes at once, how many

2A more familiar logarithm is the base-10 logarithm wheree is replaced by 10. For example,
the base-10 logarithm of 100 is 2 because this is what 10 must be raised to in order to get 100:
102

= 100. In a similar way, you can consider the logarithm in any base and, for example,
conclude that the base-4 logarithm of 64 is 3 because 43

= 64. The ancient Babylonians liked
the base 60 and we still use this to keep track of time in seconds, minutes, and hours. In our
everyday math, we use base 10, computer scientists like the bases 2 (binary system) and 16
(hexadecimal system), but to mathematicians only the basee is worthy of consideration.
3Leonhard Euler, a Swiss mathematician who lived between 1707 and 1783, was one of the
greatest mathematicians ever. He was extremely prolific andcontributed to almost every branch
of mathematics. His collected works fill over 70 volumes, andhis name has been given to so
many mathematical results that when you refer to “Euler’s Theorem” you have to specify
which Euler’s theorem that you are talking about. The constant mentioned here has an infinite
decimal expansion starting with 0.5772156..., following no discernible pattern, and it is a
famous unsolved problem whether it isrational (can be written as a fraction of two integers)
or irrational.



GOOD THINGS COME TO THOSE WHO WAIT 23

different toys can he expect to get? Note that it isnot ten. Of course he could be
really unlucky and get dinosaurs in all of them, which has probability(1/10)29.
Multiply this probability by 10 and get the probability thatonly one type of
toy (not necessarily a dinosaur) is represented. It is also possible to have 2, 3,
..., 9, or 10 different toys represented in the 29 boxes. The expected number of
toys must be somewhere between 1 and 10, but it is tricky to compute directly.
Again, additivity comes to our rescue and in this case in a really clever way.

Open all of the boxes, and first look for dinosaurs. If you find any, count
“one” and otherwise “zero” (note that you count “one” if you find at least
one dinosaur; you donot count thenumber of dinosaurs). Next, look for
another type of toy, say, a SAAB 900 (a car model featured in severalSeinfeld
episodes). If you find any, count “one” and otherwise “zero.”Keep looking
for other types of toys, each time counting “one” if you find itand “zero”
otherwise. When you have done this ten times, you have ten ones and zeros,
and if you add them, you get the number of different toys that are represented
(if your sum equals ten, they are all there). Thus, to get the final number, you
added ten numbers and by additivity of expected values, to get the expected
final number, you add ten expected values, each such expectedvalue being
computed from something that can be either one or zero. Also note that
all these individual expected values are equal because there is no difference
between the toys in regard to how likely they are to be in the box. What then
is such an expected value?

In order to find it, we only need to figure out the probabilitiesof “one”
and “zero.” If the probability of 1 isp, the probability of 0 is 1− p and the
expected value is

0× (1− p) + 1× p = p

and by adding ten such expected values, we realize that the expected number
of different toys is 10×p. To findp, note that we count “one” if there is at least
one dinosaur. The ever useful Trick Number One tells us that the probability
of this is one minus the probability of no dinosaurs, and we get

P(at least one dinosaur) = 1− (9/10)29

and finally
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expected number of different toys= 10× (1− (9/10)29) ≈ 9.5

so the juvenile Jerry is quite likely to get all his toys.
Let us summarize the coupon collecting problem and the occupancy prob-

lem in a general setting. There aren different types of objects and you are
attempting to acquire them one by one. The expected number ofattempts until
you get all of then objects is

n ×
n∑

k=1

(1/k) ≈ n × (log n + 0.58)

and if you tryN times, the expected number of different objects that you getis

n ×
(

1−
(

n − 1
n

)N
)

where you can notice that this number is very close ton if N is large, as you
would expect.

The zeros and ones that you summed above are calledindicators because
they indicate whether a certain type of toy is present in the boxes. Resorting to
indicators is a very useful technique to compute expected values, another ex-
ample being thematches that we discussed on page??. For a quick reminder,
if you write down the integers 1, 2, ...,n in random order, the probability that
there are no matches (no numbers left in their original position) is approxi-
mately 0.37 regardless ofn. It is also possible to compute the probability of
one match, two matches, and so on, and from this we could compute the ex-
pected number of matches. However, to find the expected number of matches,
it is easier to use indicators. Simply go through the sequence and count one
whenever there is a match and zero otherwise. Add the zeros and ones to get
the number of matches. To get the expected number of matches,we only need
to figure out the probability of a match in a particular position and multiply
this byn, just like with the toys in cereal boxes above. This is easy. Focus on a
particular position. As the numbers are rearranged at random, the probability
that this position regains its original number is simply 1/n and the expected
number of matches is thereforen × 1/n = 1. Regardless of how many men
leave their hats at the party, when hats are randomly returned, one man is
expected to get his own hat back.
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EXPECT THE UNEXPECTED

In the previous chapters we have seen many examples where probability cal-
culations lead to results that are surprising or counterintuitive. This is the case
for expected values as well, and we will look at several examples. First, some
random geometry.

Suppose that you create a random square by rolling a die to determine its
sidelength. You then also compute the area, which is the square of the side-
length. The possible sidelengths are thus 1, 2,..., 6; the possible areas are
1, 4,..., 36; and each sidelength S corresponds to preciselyone area A ac-
cording to the equation A= S2. Plain and simple. Let us now compute the
expected sidelength and area. The expected sidelength is easy; we already
know that this is 3.5. For the expected area, we can then square this value and
get 3.52 = 12.25. Or can we? Better be careful and do the formal calculation.
As each sidelength has probability 1/6 and corresponds to exactly one area,
each area also has probability 1/6 and we get the expected area

1× 1/6 + 4× 1/6 + · · · + 36× 1/6 ≈ 15.2

which is not at all 12.25. Apparently we cannot just square the expected
sidelength to get the expected area. This becomes clearer ifwe think about
long-term averages. For example, occurrences of sidelengths 1 are in the long
run compensated for by sidelengths 6 and they average 3.5. However, when
you compute the corresponding areas, sidelength 1 gives area 1 and sidelength
6 gives area 36; these areas average 18.5, which is not the square of 3.5. In
the same way, sidelengths 2 and 5 average 3.5, but the corresponding areas 4
and 25 average 14.5. When all areas are averaged, in the long run, the average
will settle around 15.2. Notice that this number ishigher than the square of
the expected sidelength. This is because areas grow faster than sidelengths;
doubling the sidelength quadruples the area. So when you saythat “the average
square has sidelength 3.5 and area 15.2,” it may sound absurdbut of course
you will never actually see the “average square.”

Here is a simple game. You and a friend are asked to take out your wallets
and count your cash. The only rule of the game is that whomeverhas more
must give it to the other (and if you have exactly the same amount, nothing
happens). Would you agree to play this game? You might argue:“I know
how much money I have. If my opponent has less, I lose what I have and if he
has more, I win more than what I have. There is no specific reason to believe
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that he is poorer or wealthier than I am, so this seems like a good deal. In
fact, since I have just learned about expected values, let metry to compute my
expected gain. Myx dollars can lead to either a loss ofx dollars or a gain of
y dollars, wherey > x and since a gain and a loss each have probability 1/2,
my expected gain is

(−x) × 1/2 + y × 1/2 = (y − x)/2

which is always a positive amount.”
The math formula looks impressive, and you no longer hesitate but conclude

that the game is in your favor, and you accept to play. However, when you
see the smug look on your opponent’s face, you suddenly realize that he has
gone through similar calculations and come to the conclusion that the game
is in his favor, so he is also eager to play. This makes you confused. How can
the game be favorable toboth of you?

The paradox stems from your implicit assumption that you areequally
likely to win or lose, regardless of the amount in your wallet(that is where
the probability 1/2 comes from). Clearly this is not true. For example, if you
have no money at all, you are almost certain to win unless youropponent is
also broke. At least you cannot lose anything. If you have some, but very
little money, you are quite likely to win, but if you have a lotof cash, chances
are that your opponent has less and you lose. Remember, “either/or” is not
the same as “50–50.”

Let us look at a simple example. Suppose that you and your opponent
simply flip a coin each to decide how much cash you have. Heads means
you have $1, tails that you have $2. If you and your opponent flip the same,
nothing happens. If you flip heads and he flips tails, you win $1; if you flip
tails and he flips heads, you lose $1. As these two scenarios are equally likely,
your expected gain is $0 and the game is fair.

OK, that was easy. Let us make it a little more complicated andsuppose
instead that you and your opponent choose your cash amounts by each rolling
a die. What is your expected gain? First, we can ignore all ties. Second, there
is a certain inherent symmetry in that, for example, the outcome(3,5) (your
amount first) has the same probability as the outcome(5,3). In the first case
you win $2; in the second, you lose $2. In this fashion, each gain is canceled
by an equally probable loss of the same size, and as you sum over all possible
outcomes, you end up with $0 and the game is again fair.
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Now, people don’t go around and toss coins or roll dice to decide how much
cash they have. But these were only examples to illustrate that we can describe
the amount of money in a wallet at some arbitrary time as generated by some
random mechanism. There is an amount of uncertainty in numbers and sizes
of cash withdrawals and cash payments, and in the end, it is reasonable to
assume that there is a range of possible cash amounts to whichwe can ascribe
probabilities. It is fairly easy to show (and even easier to believe) that the
expected gain for each player is $0, regardless of what this range and these
probabilities are, as long as they are the same for both players.

One of the first to describe the wallet paradox was Belgian mathematician
Maurice Kraitchik in his 1942 bookMathematical Recreations, but with neck-
ties instead of cash. I found it in Martin Gardner’s 1982 bookAha! Gotcha,
a collection of various mathematical puzzles. Mr.Gardner does not seem to
have fully grasped the problem though. In his own words, “We4 have been
unable to find a way to make this clear in any simple manner” andpoints out
that Kraitchik himself “is no help.” But Mr.Gardner also remarks that the
paradox perhaps arises because each player “wrongly assumes his chances of
winning or losing are equal,” and as I explained above, this is precisely the
resolution to the paradox. As I mentioned in Chapter 2, Mr.Gardner pursued
a lifelong devotion to educating the general public in mathematics, and con-
sidering this noble task, let us forgive him his somewhat indecisive treatment
of the wallet paradox.

The wallet paradox was puzzling at first, but I think we managed to eventu-
ally set it straight. The next paradox is similarly mindboggling and not so easy
to resolve. You are presented two envelopes and are told thatone contains
twice as much money as the other. You choose an envelope at random, open
it, and note that it contains $100. You are now asked if you want to keep
the money or switch and take what is in the other envelope. First, there does
not seem to be anything to gain from switching, but then you start thinking.
The other envelope contains $50 or $200, and since you chose randomly, it is
equally likely to be either. Thus, by switching you either gain $100 or lose
$50, and your expected gain is

4You may have noticed that mathematicians are very fond of thepluralis majestatis, a manner
of expression traditionally reserved for royalty. Mark Twain proposed to extend the privilege to
people with tapeworms; mathematicians seem to have added themselves to the list. Personally
I believe this is because mathematicians are a very friendlyand communal minded bunch who
often feel that manipulating math formulas is a lonely business.
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(−50) × 1/2 + 100× 1/2 = 25

so it seems to be to your advantage to switch.
OK, so switch then, what is the problem? Well, there is nothing special

with the amount $100, and the calculations can be repeated for any amount A
that you find in the first envelope; in which case, the other envelope contains
A/2 or 2×A and your expected gain is

(−A)/2× 1/2 + 2× A × 1/2 = A/4

dollars. Thus, it is always to your advantage to switch, so why even bother
opening the first envelope? Just take it and immediately switch to the other.
But why even bother taking the first? Just take the other envelope directly!
But wait, then that envelope has become the first so shouldn’tyou then switch
to the other, formerly first, envelope? But then you should take that envelope
directly instead. But then...

Now that was really confusing. Something must be wrong but what? Let
us try to do the experiment and see what happens. We get two envelopes, put
two amounts of money in them, and start choosing, opening, and switching.
What will happen? Naturally, you win as often as you lose in the long run,
and the amount you win or lose is always the same. There aretwo envelopes
andtwo amounts of money, but above we hadthree possible amounts floating
around: A/2, A, and 2×A. Even though you may observe A dollars in your
envelope and have no reason to believe more in either of the amounts A/2 and
2×A in the other, it does not seem sensible to translate this into probabilities
the way we did above. Once again, “either/or” is not necessarily the same as
“50–50.” In this case, it is actually either “0–100” or “100–0,” you just do not
know which.

A better description is that you are presented two envelopesthat contain A
and 2×A, respectively, for some amount A. If you choose at random, open
and switch, you are equally as likely to gain $A as you are to tolose $A. The
world makes sense again, and the envelope problem is not fun anymore.

SIZE MATTERS (AND LENGTH, AND AGE)

Consider a randomly sampled family with children. On average equally as
many boys are born as girls; therefore, such a family has, on average, equally
as many sons as daughters. But this must mean that boys tend tohave more
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sisters than brothers. For example, in a family with four children, the average
composition is two sons and two daughters, and in such an average family,
each boy has two sisters but only one brother. On the other hand, once a boy
is born, the rest of the children should be born in the usual 50–50 proportions,
which indicates that boys tend to have equally as many brothers and sisters.
What is correct?

The second claim is correct. Boys tonot tend to have more sisters than
brothers. This may seem paradoxical at first, though. If you sample a boy at
random and he has on average the same number of brothers as sisters, once
you add him to the mix does this not indicate that there tend tobe more boys
than girls in the family? Yes indeed, but there is a twist. There is a difference
between sampling afamily and sampling aboy. Indeed, when you sample a
boy, you are ruling out the families that have only girls, always selecting a
family that has at least one son, andsuch a family does on average have more
sons than daughters. For a simple illustration, consider only families with two
children so that the equally likely gender combinations listed by birth order
are GG, GB, BG, and BB. If a family is sampled at random, the probability
that it has no sons is 1/4, the probability that it has one son is 1/2, and the
probability that it has two sons is 1/4. The expected number of sons in the
family is therefore

0× 1/4 + 1× 1/2 + 2× 1/4 = 1

but if a boy is sampled at random, the number of sonsin his family (himself
included) is equally likely to be one or two, the reason beingthat you are now
choosing from the four Bs, two of which are paired with a G and the other two
with another B. The expected number of sons is therefore

1× 1/2 + 2× 1/2 = 1.5

When the sampled boy is removed, the remaining expected 0.5 sons just means
that his sibling is equally likely to be male or female. Thus,the average family
has exactly one son who still manages to have on average half abrother (not
a half-brother, mind you). But just like “average square” earlier, “average
family” is not a precise concept unless we specify how the sampling is done.
You may also think about it like this: Suppose that children from 1,000 families
are gathered at a meeting. There will then be roughly the samenumber of
boys and girls present. Suppose instead that 1,000boys are gathered and that
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each has brought all his siblings. In the entire group, therewill then tend to
be more boys than girls present, but among the siblings of theselected boys,
proportions are still 50–50. Boys donot tend to have more sisters thanbrothers;
rather, they tend to belong to families that have more sons than daughters.

If you did not get this right the first time, you are in good company. Our
constant companion Sir Francis Galton noticed in his 1869 book Hereditary
Genius that British judges were all men and came from families that had on
average five children. He erroneously concluded that the judges therefore had
on average 2.5 sisters and 1.5 brothers. Thirty-five years later he realized his
mistake and corrected it in an article with the intriguing title “Average number
of kinsfolk in each degree” published in the journalNature in 1904 (following
an even more intriguingly entitled article, “The forest-pig of Central Africa”
by zoologist Philip L. Sclater).

When we sample a boy or a British judge rather than a family, this is
an example ofsize-biased sampling. Let us take a closer look at the two-
children family. If a family is sampled at random and the number of boys
counted, this number can be 0, 1, or 2, and the corresponding probabilities
are 1/4, 1/2, and 1/4. In the terminology from page??, the probability
distribution on the set{0, 1, 2} is (1/4, 1/2, 1/4). Now instead sample a
boy. The probability distribution on the same set is then instead(0, 1/2, 1/2),
and the interesting thing is that these new probabilities can be obtained by
multiplying each of the first three probabilities by its corresponding outcome:
0 = 0 × 1/4, 1/2 = 1 × 1/2, and 1/2 = 2 × 1/4. In other words, the
probabilities changed proportional to size: 0 boys became 0times as likely,
1 boy as likely as before, and 2 boys twice as likely. The new probability
distribution is therefore called asize-biased distribution.

For another example, roll a die. The set of possible outcomesis then the
set{1, 2, 3, 4, 5, 6} where each outcome has probability 1/6. Rather than
rolling the die, you can think of this as choosing a face of thedie at random.
Now instead choose a face of the die by first choosing aspot at random, and
then choosing the face that this spot is on. As there are 1+ 2 + · · · + 6 = 21
spots, the probability to get the face showing 1 is 1/21, the probability to get
the face showing 2 is 2/21,..., and the probability to get the face showing 6
is 6/21. The probability distribution on the same set{1, 2, 3, 4, 5, 6} is now
(1/21, 2/21, ..., 6/21) instead of the distribution(1/6, 1/6, ..., 1/6) we get
whenwe choose a face at random. If we follow the idea in the previous example
with the two-children family andmultiplyeach outcome withits corresponding
probability in the old distribution, we get(1×1/6, 2×1/6, ..., 6×1/6), that is,
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(1/6, 2/6, ..., 6/6). This set of numbers is not a proper probability distribution
because the sum of the numbers is not equal to one. However, ifeach number is
multiplied by 6/21, we get precisely the new distribution when a spot is chosen
at random. Again, the probabilities in the new distributionhave changed by
a factor proportional to size. The new size-biased probability of k is the old
probability 1/6 multiplied by 6× k/21.

There is more to be said. As 21/6 = 3.5, which is the expected value of a
die roll, the size-biased probability is in fact the old probability times the size
of the outcome divided by the expected value, 1/6 × k/3.5. Let us look at
this more formally. Denote the old probability ofk by pk, the expected value
by µ, and the size-biased probability bŷpk. We then have the relation

p̂k = k × pk/µ

for k = 1, 2, ..., 6. In our particular case, thepk are all equal to 1/6 and
µ = 3.5, but the relation we stated between thepk and thep̂k is true for
any probability distribution on any set. The size-biased distribution is the old
distribution with each probability multiplied byk/µ.

For another example of size-biased sampling, suppose that you choose a
U.S. state by randomly sampling and recording the state of (a) a U.S. Senator
and (b) a member of the U.S. House of Representatives. Then (a) is equivalent
to choosing a state at random, whereas (b) is size-biased sampling because
larger states have more House representatives and are thus more likely to be
chosen. If you want all states to be equally likely, choosinga member of
the House is incorrect, but if you want to give more weight to more populous
states, it is correct. In general, size-biased sampling maybe something you do
not wish to do and that happens by mistake, but it may also be precisely what
you want to do. There are many real-life situations where some type of size-
bias becomes an issue. When an individual is chosen at randomfor an opinion
poll, she is likely to come from a family that is larger than average, live in a
city that is larger than average, go to a school that is largerthan average, work
for a company that is larger than average, and so on, all of these being factors
that may have an impact on her opinions. When an ichthyologist catches fish,
this may be done by detecting an entire school and larger schools are easier
to detect. The same situation arises for any kind of animal that appears in
clusters, be it flocks of birds, armies of frogs, or smacks of jellyfish. When a
forest is inspected from the air for a tree disease, larger patches of sick trees
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are easier to detect. Larger tumors are easier to detect on a scan or X ray. And
so on and so forth; size definitely matters.

Now let our randomly chosen family take a trip to YellowstoneNational
Park where the most visited attraction is theOld Faithful geyser, famed for
its regular eruptions, which occur about every 90 minutes. When our friends
arrive, they would thus expect to wait 45 minutes for an eruption. As they
wait, they start talking to a man who has visited many times and has carefully
recorded his waiting times, which average more than 45 minutes. He tells our
family that this indicates that the geyser is slowing down, but data from the
park rangers do not give such indications. Other than that our family’s new
friend may have had some bad luck, is there a logical explanation?

Definitely. The crux is that the Old Faithful, contrary to hername and
reputation, does not eruptexactly every 90 minutes, only on average. Indeed,
times between eruptions vary between 30 minutes and 2 hours but are most
typically in the 60–100-minute range or so. If it did erupt exactly every 90
minutes and you arrived at a random time, your expected wait would certainly
be 45 minutes. But now that intervals vary in length, you are in fact more
likely to arrive in one of the longer intervals and thus your expected wait is
longer than 45 minutes. To simplify things, suppose that intervals alternate
between one and two hours so that eruptions occur at noon, 2P.M., 3 P.M., 5
P.M., 6 P.M., and so on. The average interval length is then 90 minutes, but if
you arrive at random, you are twice as likely to arrive in a 2-hour interval and
your expected wait is one hour; if you arrive in a 1-hour interval, your expected
wait is half an hour. Thus, two thirds of the time you wait on average an hour
and one third of the time, half an hour. As 2/3× 1+ 1/3× 1/2 = 5/6, your
expected wait is 5/6 of an hour or 50 minutes, longer than half the average
interval time 45 minutes. See Figure 5.1 for an illustrationof this scenario. In
reality there is of course much more randomness than just shifting back and
forth between one- and 2-hour intervals but you get the general picture.

x xx x x x xxxx x xxx
Noon 8:006:005:003:002:00

Figure 5.1 The Old Faithful erupting at alternating intervals of lengths one hour
and two hours and successive random arrivals. Note that there are more arrivals in
the 2-hour intervals, making the average waiting time for aneruption more than 45
minutes.
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The situation described above is an example of thewaiting time paradox, a
well-known phenomenon in probability. Another example of the waiting time
paradox is when you catch a bus by randomly arriving at a bus stop. Even
though the bus may run on average twice an hour, due to random variation,
you are more likely to hit the longer intervals and must wait on average more
than the 15 minutes’ waiting time you would have if they ran exactly every
half-hour. However, bus arrivals are still fairly regular and the difference is not
likely to be large. It is not until the case of the rare and unpredictable events
we studied in Chapter 3 that the name “paradox” is really earned. Let us look
at earthquakes as an example. According to the U.S. Geological Survey, great
earthquakes (magnitude 8 and higher on the Richter scale) occur on average
once a year worldwide. Considering the capricious nature ofearthquakes, let
us agree that they qualify as rare and unpredictable. But this means that at
any given time, the expected waiting time until the next great earthquake is
one year, regardless of when the previous earthquake occurred, so if a space
alien decides to pay a surprise visit to Earth, he can expect to wait one year
for the next earthquake. On the other hand, when he arrives, the expected
time since thelast earthquake is also one year (just think of time running
backward). One year since the last earthquake, one year until the next, yet
one year between earthquakes and not two! Seems paradoxicalbut remember
that these are expected values, and our alien friend is simply more likely
to arrive in an interval that is longer than usual. Very shortintervals that
contribute to lowering the expected length are likely to be missed completely.

The waiting time paradox has a lot in common with size-biasedsampling.
Consider, for example, the simplified Old Faithful example with intervals
between eruptions that are equally likely to be one hour or two hours. A
randomly sampled interval is then equally likely to be of either length, and its
expected length is 90 minutes. However, when youarrive at random, you can
think of this as sampling an interval where the 2-hour interval is twice as likely
as the 1-hour interval. Thus, the initial probability distribution (1/2, 1/2) on
the set{30,60} (minutes) has changed to(1/3, 2/3), where more weight is
given to the larger value. Note how the new probabilities areproportional
to the old probabilities times the interval lengths. Thus, the new distribution
is size-biased or, more appropriately in this case,length-biased. This was
the simplified example but regardless of what the real distribution of inter-
eruption times are, when you arrive at random you choose suchan interval
with a probability proportional to its length.
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A similar type of bias shows up whenlife expectancy is computed. In our
terminology, life expectancy is the expected lifespan of a newborn individual.
In a human population, life expectancy is estimated by recording the ages of
everybody who dies (usually in a year) and taking the average. In theSeinfeld
episode “The Shower Head,” George Costanza tries to convince his parents
to move to Florida by pointing out that life expectancy in Florida is 81 and
in Queens where they live, 73. Does this mean that Frank and Estelle could
expect to live eight years longer in Florida? Not quite. One reason (other
than the orange juice) that Florida has a high life expectancy is that many
people move there from other states, most notably New York. As these people
have already started their lives, and in most cases lived a good part of it, they
cannot die at an age lower than that of their move. Thus, they “deprive”
Florida of deaths at a young age, and this increases the average age at death.
This scenario is typical for any city, state, or nation that has net immigration,
another well-known (likewise orange cultivating) examplebeing Israel. At
the other end, states with net emigration have lower life expectancies. To help
you understand, consider an extreme example and suppose that people born in
A-town die either at age 40 or at age 80. They live and work in A-town, and if
they survive age 40, they retire at 65 and then move to B-town where they live
the rest of their lives. Life expectancy in A-town is 40 and inB-town 80, even
though the people are really the same. Introduce a more realistic variability
in lifespans and migration ages and you get a less drastic butsimilar effect.

DEVIANT BEHAVIOR

Let us once again sit down at the roulette table.5 Other than betting on a
single number, there are plenty of ways to bet on a whole groupof numbers.
On the roulette table, the numbers 1–36 are laid out in a 3 by 12grid where
the top row is 1–2–3, the second row 4–5–6, and so on. Also, half of these
numbers are red and half are black. On top of this grid are the numbers 0
and 00, colored green (on American roulette tables; European tables do not
have the double zero). To bet on a single number is called astraight bet. You
can also, for example, place anodd bet, which does not mean that you are
betting in an unusual manner but that you win if any of the odd numbers 1,
3,..., 35 comes up. Likewise, you can bet on even or on red or black. You can

5I am constantly whetting your appetite with little glimpsesinto the world of gambling. Be
patient. In Chapter 7, we will indulge shamelessly in all kinds of games, bets, and gambles.
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also dosplit bets, street bets, square bets, column bets, and yet some. This is
casino lingo, and all it means is that you can place your chip so that it marks
more than one number and you then win if any of your numbers come up.
Needless to say, the amount you win is smaller the more numbers you have
chosen and the payouts are carefully calculated so that you lose 5 cents per
$1 regardless of how you play. For example, let us say that youwager your
dollar on an odd bet. The payout of such a bet is $1, and since there are 18
odd numbers between 1 and 36, the probability that you win $1 is 18/38 and
with probability 20/38 you lose your wagered dollar. Your expected gain is
therefore

1× 18/38+ (−1) × 20/38 = −2/38≈ −0.05

an expected loss of 5 cents per $1, just like if you place a straight bet. With
the odd bet, your chances of winning are significantly higherthan with the
straight bet, but when you win, the payout is much smaller. Inother words, the
variability of your fortune is much greater when you place straight bets. This
fact is not reflected in the expected value, so it would be niceto have a way
to measure variability, in other words, to measure how much theactual value
tends to differ from theexpected value. There are different ways to do this, but
probabilists and statisticians have come to the consensus that the best measure
of variability is something called thevariance. This is defined as the expected
value of the square of the difference between the actual value and the expected
value.6 That was a mouthful. Let me illustrate it with the roulette example
of odd bets. The expected value of your gain is−0.05 (dollars) and the two
possible actual values are−1 and 1. The differences from the expected value
are−1 − (−0.05) = −0.95 and 1− (−0.05) = 1.05 respectively. Square
these two values to get(−0.95)2 = 0.9025 and 1.052 = 1.1025. Finally,
we need to compute the expected value of these squared differences. As the
first of them corresponds to a loss, it has probability 20/38 and the second,
corresponding to a win, has probability 18/38. This gives the variance as the

6Squares are computed because we want to have only positive values. Another way to achieve
this would be to computeabsolute values of the differences between actual and expected
values (i.e., the differences without signs). It turns out that squares have nicer mathematical
properties than absolute values; for example, with some restrictions, variances are additive just
like expected values, something that would not be true if we had used absolute values instead
of squares.
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expected value of these two squares:

0.9025× 20/38+ 1.1025× 18/38≈ 1

a number that in itself does not mean much, but let us compare with the straight
bet. Here, the possible actual values are−1 and 35 and a similar calculation
to the one above gives a variance that is approximately 33. The much larger
value of the variance of the gain of a straight bet than that ofan odd bet reflects
the larger variability in your fortune with the straight bet. In the long run, you
lose just as much with either type of bet, but the paths to ruinlook different.

The variance thus supplements the expected value in a usefulway. Let
us look at another example, the inexhaustible conversationtopic of weather.
Two U.S. cities that for different reasons caught my attention in early 2006
were Arcata and Detroit. In January 2006, I visited Arcata onthe coast of
northern California. Browsing through some weather statistics, I calculated
that the daily high temperatures have an annual average of about 59 degrees
Fahrenheit. A few weeks later, Super Bowl XL was played in Detroit, which
has the same annual average daily high of about 59 degrees. Choose a day
of the year at random to visit Arcata or Detroit, and the expected daily high
is the same, 59 degrees. However, this does not mean much until it is also
supplemented with the variance, which for Arcata is 12 and for Detroit 363
(and I challenge you to find a place with a lower temperature variance than
Arcata). The much larger variance of Detroit reflects the larger variability in
temperatures over the year. For example, the average daily high in Detroit in
January is 33 and in July, 85. The corresponding numbers for Arcata are 55
and 63. In Detroit you will need to bring shorts or long johns depending on
the season; in Arcata, none of these garments are of much use (but bring an
umbrella in the winter).

I mentioned in passing above that there is no clear meaning ofthe value
of the variance. One problem is that it is computed from values that have
been squared, which means that the units of measurement havealso been
squared. What does it mean that the variance is 33 square dollars or 363
square degrees? Nothing, obviously, but there is an easy fix:Compute the
square root of the variance. This number is called thestandard deviation
and is more meaningful because the unit of measurement is preserved. In the
roulette example, the standard deviations for straight andodd bets are $1 and√

33≈ $5.7, respectively. In the weather example, the standard deviation for
Arcata is 3.5 degrees and for Detroit, 19 degrees.
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This feels a little better, but the standard deviation stilldoes not have the
crystal clear interpretation that the expected value has. There are some rules
and results that can help, one of them due to another great Russian mathemati-
cian, Pafnuty Lvovich Chebyshev, who lived between 1821 and1894 and is
famous for his contributions to probability, analysis, mechanics, and, above
all, number theory.7 His result, known asChebyshev’s inequality, states that
in any experiment, the probability to get an outcome withink standard de-
viations of the expected value is at least 1− 1/k2, for any value ofk. For
example, choosingk = 2 informs us that regardless of what the experiment
is, the probability to get an outcome within two standard deviations of the
expected value is at least 0.75. Stated differently, Chebyshev’s inequality tells
us that in a set of observations, at least 75% of the observations fall within
two standard deviations of the average. In Arcata, we can expect at least 273
days with a daily high temperature between 52 and 66, and in Detroit, we can
expect at least 273 days between 21 and 97 degrees. And withk = 3, we
get 1 − 1/k2 = 8/9 ≈ 0.89; at least 89% of observations are within three
standard deviations of the expected value.

I would like to stress the “at least” part of Chebyshev’s inequality. In reality
the probabilities and percentages are often significantly higher. For example,
in the roulette example with odd bets,all observations are within two standard
deviations. Also note that if you choosek = 1, all Chebyshev tells you is that
at least 0% of the observations are within one standard deviation. Certainly
true but not very helpful. Chebyshev’s inequality tends to be crude in this way
but that is only natural because it is always true, regardless of the particulars
of the experiment. It is sort of like saying that every U.S. state is smaller than
572,000 square miles in area. This is needed to include Alaska and is certainly
true if we only consider the continental United States, but then 262,000 square
miles would be enough. And if we restrict ourselves to New England, even
less is needed. Despite these shortcomings, Chebyshev’s inequality is still
useful as we will learn in the next section.

Let me again pander to those of you who suffer from theory cravings and
give the formal definition of variance. Suppose that our experiment can result
in the outcomesx1, x2, ..., and that these occur with probabilitiesp1, p2, ...,

7Chebyshev also holds the unofficial world record among mathematicians for most spellings
of last name. I should really say transliterations rather than spellings because in his native
Cyrillic alphabet he isQebyx�v and nothing else. In the Western world, he has appeared in
print in about a dozen different forms ranging from the minimalist Spanish versionCebysev to
the consonant-indulgence of the GermanTschebyscheff.
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the same setup as we had when we formally defined expected value earlier.
Denote this expected value byµ, and remember that the variance involves
computing the squared differences between each possible value andµ, then
computing the expected value of these squared differences.Translating this
verbal description into mathematics gives the formal definition of the variance,
commonly denoted by the symbolσ2 (square of the Greek letter “sigma”) as

σ2 = (x1 − µ)2 × p1 + (x2 − µ)2 × p2 + · · ·

where the summation stops eventually if there are a finite number of outcomes
and goes on forever otherwise. Check for yourself that this is precisely what
we did above in the roulette examples. Just for practice, letus do the variance
for the roll of a die. The possible values are 1, 2,..., 6, eachwith probability
1/6, and the expected value is 3.5. The variance is therefore

(1− 3.5)2 × 1/6 + (2− 3.5)2 × 1/6 + · · · + (6− 3.5)2 × 1/6 ≈ 2.9

which gives a standard deviation of 1.7. Let us compare this with the standard
deviation of a die that has 1 on three sides and 6 on the remaining three. This
die gives 1 or 6, each with probability 1/2, so it also has an expected value
3.5. Its variance is

(1− 3.5)2 × 1/2 + (6− 3.5)2 × 1/2 = 6.25

which gives standard deviation 2.5. This is larger than the standard deviation of
the ordinary die because this special die has outcomes that tend to be further
away from the expected value 3.5. Again, we have an example where the
expected value does not tell the full story but is nicely supplemented by the
standard deviation.

Recall that the standard deviation is the square root of the variance, and it
is therefore denoted byσ and we can state the formal version of Chebyshev’s
inequality. Before we do that, though, let me mention an important concept
in probability. Before any experiment, the outcome is unknown and we can
denote it byX, which means thatX is unknown before the experiment and
gets a numerical value after. Such an unknown quantity whosevalue is de-
termined by the randomness of some experiment is called arandom variable.
This is a very important concept in probability that greatlysimplifies the no-
tation in many examples. If a die is rolled, instead of writing things like “the
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probability to get 5” and “the probability to get 6,” we can first denote the
outcome of the die byX and write P(X = 5) and P(X = 6), a mathemati-
cal and more convenient notation. Chebyshev’s inequality can now be stated as

P(µ − k × σ ≤ X ≤ µ + k × σ) ≥ 1 − 1/k2

or, using absolute values,

P(|X − µ| ≤ k × σ) ≥ 1 − 1/k2

for any value ofk (which by the way does not have to be an integer; it could
be 1.5 or 4.26 or any other nonnegative number). Make sure that these last
two expressions are equivalent, and that they agree with theverbal description
of Chebyshev’s inequality that I gave earlier.

FINAL WORD

The concept of expected value that we have investigated in this chapter can
be thought of as the ideal average in a random experiment. Theexpected
value summarizes the experiment in a single number, but we have seen many
examples of how some care must be taken in the interpretationof this. The
expected value’s constant companion is the standard deviation that measures
the amount of variability in the experiment, and together the two,µ andσ,
provide a convenient summary of the random experiment. I have also at times
hinted that we can interpret the expected value as the long-term average, and in
the next chapter, this particular interpretation will be thoroughly investigated.
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