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Preface

This book is about those little numbers that we just cannoams. Try to
remember the last day you didn’t hear at least somethingtgiyobabilities,
chance, odds, randomness, risk, or uncertainty. | bet &&nba while. In
this book, | will tell you about the mathematics of such tiErand how it
can be used to better understand the world around you. lttia mextbook
though. It does not have little colored boxes with definitimrtheorems, nor
does it contain sections with exercises for you to solve. Mympurpose is
to entertain you, but it is inevitable that you will also lea thing or two.
There are even a few exercises for you, but they are so sutefepted that
you might not even notice until you have actually solved them
The spousal thanks is always more than a formality. | thankunvy

for putting up with irregular work hours and everything etkat comes with
writing a book, but also for help with Greek words and for rading me
of some of my old travel stories that you will find in the bookarh deeply
grateful to Professor Olle Haggstrom at Chalmers Uniteds Technology in
Goteborg, Sweden. He has read the entire manuscript, arabhiments are
always insightful, accurate, and clinically free from unessary politeness.
If you find something in this book that strikes you as partciyi silly, chances
are that Mr. Haggstrom has already pointed it out to me tvait k decided to
keep itfor spite. | have also received helpful comments fdoimn Haigh at the
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University of Sussex, Steve Quigley at Wiley, and from anrgmaous referee.
Thanks also to Kris Parrish and Susanne Steitz at Wiley, éoeghivan Vreede
at Sheree Van Vreede Publications Services for excellgmtextiting, and to
Amy Hendrickson at Texnology Inc. for promptly and patigraéinswering
my LaTeX questions.

A large portion of this book was written during the tumultsokall of
2005. Our move from Houston to New Orleans in early Augustedrout
to be a masterpiece of bad timing as Hurricane Katrina hitehweeks later.
We evacuated to Houston, and when Katrina’s sister Ritaosgped, we took
refuge in the deserts of West Texas and New Mexico. Sandstareso much
more pleasant than hurricanes! However, it was also nicettom to New
Orleans in January 2006; the city is still beautiful, ancchargrilled oysters
are unsurpassed. | am grateful to many people who housediireled us in
various ways during the Fall and by doing so had direct orgaiimpact on
this book. Special thanks to Kathy Ensor & Co. at the DepantrogStatistics
at Rice University in Houston and to Tom English & Co. at thdl€ye of the
Mainland in Texas City for providing me with office space. &g, thanks
to Professor Peter Jagers at Chalmers University of Teogpivho as my
Ph.D. thesis advisor once in a distant past wisely guidednmogigh my first
serious encounters with probabilities, those little nuratikat rule our lives.

PETER OLOFSSON
www.peterolofsson.com

San Antonio, 2014
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Beyond Probabilities: What to Expect

GREAT EXPECTATIONS

In the previous chapters, | have several times talked abbat happens “on
average” or what you can “expect” in situations where thereandomness
involved. For example, on padg®, it was pointed out that the parameter
A in the Poisson distribution is thaverage number of occurrences. | have
mentioned that each roulette number shows upaesage once every 38
times and that you caaxpect two sixes if you roll a die 12 times. The time has
come to make this discussion exact, to look beyond proligsitand introduce
what probabilists call thexpected value. This single number summarizes an
experiment, and in order to compute an expected value, yed teeknow all
possible outcomes and their respective probabilities. tifea multiply each
value by its probability and add everything up. Let us do gpbinexample.
Roll a fair die. The possible outcomes are the numbers 1 tjir@) each
occurring with probability 16, and by what | just described, we get

1x1/64+2x1/64+3x1/64+4x1/6+5%x1/6+6x1/6=35

as the expected value of a die roll. You may notice that tha texpected”
is a bit misleading because you certainly do not expect t@detvhen you
roll the die. Think instead of the expected value as the expeverage in

a large number of rolls of the die. For example, if you roll the five times
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and get the numbers 2, 3, 1, 5, 3, the averag@ is3+ 1+ 5+ 3)/5 = 2.8.

If you roll another five times and get 2, 5, 1, 4, 5, the averager the ten
rollsis 31/10 = 3.1. Asyou keep going, rolling over and over and computing
consecutive averages, you can expect these to settle imdda | will
elaborate more on this interpretation and make it precigeamext chapter.
You can also think of the “perfect experiment” in which the @ rolled six
times and each side shows up exactly once. The average dktbetsomes

in the perfect experiment is 3.5, and this is the expectedevat a die roll.

In the casino gameraps, two dice are rolled and their sum recorded. What
is the expected value of this sum? The 11 possible values &e.212, but
these are not all equally likely so we must figure out theirbaitailities. In
order to get 2, both dice must show 1 and the probability of ihil/36. In
order to get 3, one die must show 1 and the other 2 and as treeteradice
that can each play the role of “one” or “the other,” there are butcomes that
give the sum 3. The probability to get 3 is therefo8@. To get 4, any of
the three combinations 1-3, 2-2, or 3-1 will do, so the proibals 3 /36,
and so on and so forth. The outcome 7 has the highest prdigabjl86, and
from there the probabilities start to decline down §36 for the outcome 12
(consult Figure?? on page?? if you feel uncertain about these calculations).
Now add the outcomes multiplied by their probabilities to ge

2x1/36+3x3/36+---+12x1/36 =7

as the expected sum of two dice. This time, the expected valaenumber
than youcan get as opposed to the 3.5 with one die. Unfortunately, Itdsibs
not mean that you actually expect to get 7 in each roll or youldiexpect to
leave the casino a wealthy person, 7 being a winning numhaaps. It only
refers to what you can expect on average in the long run.

Note that the expected value of the sum of two dice, 7, equatetthe
expected value of the outcome of one die, 3.5. This is no @®nce. Ex-
pected values have the nice property of being what is callieitive, which
means that we did not have to do the calculation we did abavéhéotwo
dice. Instead, we could just have said that as we roll two dizd each has
the expected value 3.5, the expected value of the sum is 3.5= 7. This
is convenient. If you roll 100 dice, you know that the expdctem is 350
without having to figure out how to combine the outcomes of dig@ to get
the sum 298 or 583 (but feel free to try it, at least it will kegpu out of
trouble).
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Expected values are more than additive; they are kwar, which is a
more general concept. In addition to additivity, lineaniteans that if you
multiply each outcome by some constant, the expected valueuitiplied
by the same constant. For example, roll a die and double ttteme. The
expected value of the doubled outcome is then twice the ¢xpealue of the
outcome of the roll, 2 3.5= 7. Note that the expected values are the same
when youdouble the outcome obne roll and when youadd the outcomes
of two rolls. The actual experiments are different though. In the iase,
the possible values are the 6 even numbers 2, 4,..., 12; iseitend, the 11
numbers 2, 3, ..., 12.

To illustrate the convenience of linearity, suppose that gonstruct a ran-
dom rectangle by rolling three dice. The first determinesside, and the sum
of the other two determines the other side. What is the ergazitcumference
of the random rectangle? There are 216 different outcomésedhree dice.
The smallest possible rectangle measures one by two, f@asrd&rence 6,
and probability ¥216 because there is only one way to get(it;1,1). The
largest rectangle measures 6 by 12, has circumference 86éikawise prob-
ability 1/216. In between these, there is a range of possibilities diitérent
probabilities. For example, you can get circumference &ed different
ways: (1,1,2), (1,2,1), and(2,1,1), so circumference 8 has probability ZL6
(these three rectangles have dimensior8,11x 3, and Z 2, respectively). To
compute the expected circumference, however, you do nalk teeggure out
all these outcomes and their probabilities. Simply notétthecircumference
is twice one side plus twice the other; that the sides haveagd lengths
3.5 and 7, respectively; and apply linearity to get the etgmbcircumference
2 x 3.5+ 2 x 7= 21. Linearity is a very convenient property indeed.

You may have noticed that the expected values in our exartiplegar have
been right in the middle of the range of possible outcomes mtdpoint of
the numbers 1, 2,..., 6 is 3.5; the midpoint of 2, 3,..., 12;ighé midpoint
of 100, 101,..., 600 is 350; and the midpoint of the rectagieumference
values is(6 + 36)/2 = 21. All these examples have in common that the
probability distributions aresymmetric. If you roll one die, start from 3.5,
which is in the middle and step outward in both directionsn@ 4 have the
same probabilities; 2 and 5 have the same probabilities;laartl 6 have the
same probabilities. Of course, in this particular cagkputcomes have the
same probabilities, /6, so it may be more interesting to look at the sum of
two dice instead. Here, 7 is in the middle and has probal}iB6. One step
out we find 6 and 8, which both have probability3. Continue like this
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until you hit the last two outcomes 2 and 12, each with prdiigtii /36. So
in these cases, you could actually have found the expectad sanply by
computing the average of the possible outcomes: The avefabe,..., 6 is
3.5, and the average of 2, 3,..., 12 is 7. This is not alwaysdke though, and
here is another dice example to prove it. Roll two dice andnethelargest
number. What is the expected value?

The largest number can be anything from 1 to 6, but these drequally
likely, nor are the probabilities distributed symmetrlgabnd it is probably
clear that the largest value is expected to be more than 8.6ndthe expected
value, we need to first compute the probabilities. The ongeda which the
largest number equals 1 is when both dice show 1, and this roasimlity
1/36. Three cases give the largest number 2: 1-2, 2-1, and Bd2hae
probability is thus 336. Continue like this until you reach 6, which is the
largest number in 11 cases and has probability361(you might again find it
helpful to consider Figur@?). If you are into math formulas, the probability
that the largest number equaiss (2 x k£ — 1)/36 for k ranging from 1 to 6.
At any rate, the expected value is now computed as

1x1/36+2x3/36+-+6x 11/36~ 4.5

rounded to one decimal. | leave it up to you to demonstratetitteaexpected
smallest number isx~ 2.5 (obvious without calculations?).

Here is another example of asymmetric probabilities, whildo involves
negative numbers in a natural way. You play roulette and berfthe number
29. What is your expected gain? There are two possibilitiggh probability
1/38, number 29 comes up and you win $35, and with probability387
some other number comes up and you lose your dollar. If weedgréescribe
a loss as a negative gain, your gain can therefore be either 33. There
is no problem with having a negative number, and the expegikee: of your
gain is computed just like before:

35 x 1/38+ (—1) x 37/38 = —2/38 ~ —0.0526

an expected loss of about 5 cents. Again we have a case in Whigiexpected
value cannot actually occur but must be interpreted as atemg average. In
the long run, each number comes up once every 38 spins, smaskat this
is exactly what happens; the numbers come up perfectly in order: 00,4, 1
..., 38 and you bet $1 on 29 each time, wagering a total of $88.will then
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lose $37 and win $35 (and keep the dollar you bet on 29), a lmdalof $2
out of the $38.

You often see people at the roulette tables betting on sediffexrent num-
bers, sometimes covering almost the entire table. Althatligh certainly
increases your chances of winning in a single spin, it dodsimgto improve
your expected long-term losses. Indeed, you lose 5 centdgiar on each
single number, so if you for example bet $1 on each of tenmiffenumbers,
additivity of expected values tells you that you can expedbse on average
50 cents. Regardless of betting strategy, the casino takeserage 5 cents
out of every dollar you risk, which does not sound like muchib@enough to
give them a very good profit.

As an exercise, let us compute the expected gain in the mozémt
chuck-a-luck. In this game, you wager $1, three dice aredokhnd your win
depends on the number of 6s. If there is one 6, you win $1; ietlee two
6s, you win $2; and if there are three 6s, you win $3. Only if¢hare no 6s
do you lose your $1. On pad??, we saw that the probability that you win
something is 0.42. Thus, you lose your $1 with probability8).but if you
win, you may win more than $1 so it is not immediately obvichet the game
is stacked against you. The probabilities to get zero, ame, &and three 6s
are

Pno6y = (5/6)° = 125/216 ~ 0.58
Pone§ = 3x1/6x(5/6) = 75/216 ~ 0.35
P(two 69 = 3x (1/6)2x5/6 = 15/216 ~ 0.07
P(three 65 = (1/6)° = 1/216 ~ 0.005

where the “3” in the two middle probabilities is there beaatlse one die that
shows different from the other can be any of the three (in thet number of
6s has a binomial distribution, which we discussed in ChdpteThe decimal
numbers above do not add up to 1 as they should, but that ibenbuse they
are rounded. Let us now compute the expected gain. Your gpiale the
number of 6s if you get any, and otherwise, itH4. The expected gain in
chuck-a-luck is

(—1) x 125/216+ 1 x 75/216+ 2 x 15/216+ 3 x 1/216~ —0.08

that is, an expected loss of about 8 cents per $1 wagered. &fimancial
point of view, you're worse off than at the roulette table. alfgyou can
think of what would happen in the ideal run where each of the @dssible
outcomes of the three dice comes up exactly once. You the$8vance, $2
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15 times, $1 75 times, and lose $1 125 times, for a total logs @fof your
$216 wagered.

Suppose that you try another kind of gambling: stock investis. A friend
tells you that a particular mutual fund is equally likely tither go up 50%
or down 40% each year for the next few years to come. If yousing&,000,
how much can you expect to have after two years?

First consider one year. After the first year you are equélllgly to have
$1,500 or $600, and the average of these is $1,050. In gettezaverage of a
50% gain and a 40% loss is a 5% gain, so you can expect to gaia&¥year.
After two years, your expected fortune is therefore $1,8000.05x 1.05=
$1,102.50. On the other hand, as your fortune is equallfyiilceincrease as it
is to decrease each year and there are two years, you cart éxpego down
one year and up the other. Regardless of which of these yesrsdmes first,
your fortune will be $1,000< 1.50 x 0.60= $900. This seems conflicting.
How can you expect your fortune both to increase and to dsefea

It depends on what you mean by “expect.” The expected valumof
fortune after two years is certainly $1,102.50. There ate &mually likely
scenarios for the two years: up-up, up—down, down—-up, amag-ddown,
leading to fortunes of $2,250, $900, $900, and $360, resedgtand the
average of these is $1,102.50. However, if you instead cterthe expected
number of “good years,” this number is one and thast likely scenario is
one good and one bad year, which makes $900 the most likalg \edlyour
fortune. The most likely value, in this case $900, is calleshtode or modal
value. It is up to you which of the two measures of your fortune younkh
makes most sense. Note that although yegected fortune increases, the
actual fortune only increases if there are two good years of whighehs a
25% chance. If you compare this investment scheme with caiegilies a
fixed 5% interest each year, the two are on average equally goo equally
likely to be ahead after a year. However, the fixed interesese has a 75%
chance of being ahead of the mutual fund after two years.elf tompete, it
is a fair game year by year but not over two years, somewhaidpaically.
And as the years keep passing by, your expected fortunegiseseoy 5% each
year, but under the most likely scenario your fortune indtdecreases by 10%
every two years. After 20 years, your initial investment @f@0 has grown
to $2,653 as measured by expected returns and fallen to $89 the most
likely scenario. In order for your actual fortune to increadter 20 years, you
need at least 12 good years, which has a probability of atiasit 2
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The rates in the example may not be very realistic but sene dmstic
illustration to the general principle that a decrease isarggvere than an
increase. For example, if a 50% gain is followed by a 50% lassvice
versa), this leaves you with a net loss of 25%. The combinatf@a 10% gain
and a 10% loss results in a net loss of 1%, and so on. If equatg &nnual
gains and losses are equally likely, your expected fortengains unchanged,
but in order for the actual fortune not to decrease, you neegtgood years
than bad. This is still true even if the annual gains tend tellggntly larger
than the annual losses (as in the extreme example above).

When it comes to risking money in order to make money, you rofist
course weigh risk against benefit and considering only tlpeebed gain is
not sufficient. You may buy a lottery ticket for the slim chanto win big
even though you face an expected loss. But if | offer you trenchk to bet
$1,000 on a coin toss and pay you $1,100 if you get heads, yghtmbt
want to play even with the expected gain of $50. In the longyoun would
certainly ruin me, but for a single bet you might not be wijito risk $1,000
for the chance of winning that extra $100. You face similana®ns when it
comes to investing your money. Should you take a risk on fighkertain
but potentially very profitable stocks, or should you go vite lower risks
of mutual funds or bonds? The expected return should playeaimoyour
decision but should definitely not be the sole criteridwet us look closer at
the mathematics of stock markets.

OPTIONS...
EFFICIENT MARKET HYPOTHESIS
OPTIONS, EUROPEAN, AMERICAN

You have $100 to invest and have three choices: (a) a rigkbdond, (b) a
stock currently trading at $100, or (c) an option to buy thmeatock. The
main question is how much the option should cost and the nssinnaption
is that your expected gain is the same regardless of what yoose to do,
assuming this is what the efficient market hypothesis insplieet us first
consider (a), the risk-free bond, and assume the annuaesiteate is 5%.
Thus, if you buy the bond, you will have $105 a year later. Neahsider (b),
the stock that is currently trading at $100. To simplify #nconsiderably,
we will assume that the stock price can only take on 2 diffevaiues after a
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year: $150 or $50. Although completely unrealistic, theuagstion is made
to simplify the calculations and illustrate an idea; we \idter consider more
realistic scenarios. It wold be tempting to assume the stoglally as likely
to increase as to decrease, thus making its expected vaduagkar the same
as its current price, $100, but remember that we have asstiaede will do
as well with the stock as with the bond, on average. Thus,xpeated value
of the stock after a year is $105 and if we jetlenote the probability of an
increase, we get the equation

100 x p 450 x (1 — p) = 150

which we can solve fop to getp = 0.55. Thus, there is a 55% chance that
the stock increases in value to $150 and a 45% chance thatéatees to $50.
With these probabilities, you do as well buying the bond asstiock.

What, then, about (c), the option? How much should you pai fioiorder
to have the same expected fortune of $105 a year later? Ifgp& p for the
option, after a year you will have a fortune of 0 — D) if the stock has gone
up so that you exercise the option to buy the stock. There &% éhance
of this scenario. If the stock goes down, of which there is@4hance, you
do not exercise the option and your fortune is1$0 — D). We now get the
equation

(150 — D) x 0.55 4 (100 — D) x 0.45 = 105

which has the solutio® = 22.5. Thus, the fair value of the option is $22.50.
If somebody offers the option at a lower price, you should iugither than
the stock itself for a higher expected yield.

So what about this unrealistic assumption that the stockoointake on
two possible values after ayear? It's all about time scalexe that a change
from $100 to $150 is a 50% increase, and a change from $10@®ts$660%
decrease. Now, rather than a year, consider changes ovérimamth periods
such that we can still get a 50% increase or decrease aftaralyave want
to keep percentual changes constant over the two 6-morithdgeit turns out
that we must let increases be by about 22.5% and decreasé&siliy29.3%.
Thus, after the first 6-month period, the stock is worth ei$22.50 (22.5%
increase) or $70.70 (29.3% decrease). In the first casegiiétls another
22.5% increase, the stock is worth $150 (rounded to the sedodar), a 50%
increase over the year. In the case of two consecutive dngmice, it is worth
70.7% of $70.70 which is $50 (again rounded), a 50% decreasele year.
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Note that we now also have the possibility of an increaseovigdld by
a decrease, or vice versa, over the two 6-month periods. dh ekthese
cases, the stock will be worth about $87 after a yea (x 1.225 x 0.707 =
86.61). Thus, we now have 3 possible values after a year ratherZhand
by choosing probabilities carefully, we can makje the expewalue equal
to the $105 we would get with the risk-free bond. Now, 3 is @mentally
better than 2 but still, of course, highly unrealistic. Baotyunderstand where
this is going. Instead of 6-month periods, consider monthsweeks. Or
days, hours, minutes, seconds, milliseconds, and so dryoatcan imagine
(mathematicians are good at this) that the stock price moessnuously in
time, in such a way that the expected value after a year is. 8488 we get
into the highly advanced territory sfochastic differential equationswhich is
the necessary environment for the famous (some would sasnioiis)Black-
Scholes formula for option pricing.

Something about transaction costs?

BLOOD AND THEORY

END OF RED TEXT

Careful consideration of expected values can save time amgkynas the
next example illustrates. During World War 11, millions oferican draftees
had their blood drawn to be tested for syphilis, a diseasenha expected to
be detected in a few thousand individuals. Analyzing thetllsamples was
a time-consuming and expensive procedure, and a Harvarmbeust, Robert
Dorfman, came up with a clever idea. Instead of testing eadividual, he
suggested, divide the draftees into groups, draw theirdglamd mix some
blood from everybody in the group to formpmmoled blood sample. If the
pooled sample tests negative, the whole group is declarelthgeand if it
tests positive, each individual sample is tested sepsratBhe point is of
course that entire groups can be declared healthy by jusbloel sample
analysis. The same idea can be used for any disease that&where large
populations need to be screened. Let us look at the mathesratpooled
blood samples.
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Denote the size of the group lyand the probability that an individual has
the disease by.! Additional tests must be donegbmebody has the disease,
and becaussomebody is the opposite ofiobody, this is a case for Trick Num-
ber One. The probability that an individual does not havalibease is t p,
and assuming independence between individuals, the giibpéiat nobody
has the disease {4 — p)™. Finally, the probability that somebody has the
disease is + (1— p)™, and this is then the probability that the pooled sample
tests positive; in which case,additional individual tests are done. After the
first test, with probability(1 — p)™, there are no additional tests, and with
probability 1— (1 — p)™, there aren additional tests. The expected number
of tests with the pooling method is therefore

14+nx (1—(1—p)")

where the first 1 is there because one test must always be ddritbeterm

0 x (1 — p)™ that should formally be added was ignored because it equals O
Now compare this expected value with theests that are done if all samples
are tested individually. Let us put in some values, for examp = 20 and

p = 0.01. Then - p = 0.99, and the expected number of tests is

14+20x (1-0.99° ~ 4.6

which is certainly preferred over the 20 tests that wouldehavbe done indi-
vidually. Note also that even if the pooled blood sample witpee, very little
is lost because the pooling method then requires a total ¢é¢s$ instead of
20, only one test more (and there is no need to draw more blobdt was
drawn initially is used for both pooled and individual tgstghe probability of
a positive pooled blood sample is-10.99° ~ 0.18, so if people are divided
into groups of 20, about 18% of the groups need to undergonittigidlual
testing. One practical concern is that if groups are tocdlattge pooled blood
sample might become too diluted and single individuals wiesiack may go
undetected. Inthe case of syphilis, however, Dorfman paint that the diag-
nostic test is extremely sensitive and will detect the amtigven in very small
concentrations. Dorfman’s original article, bearing thengwhat politically

'Epidemiologists use the terpneval encefor the proportion of individuals with a certain disease
or condition. For example, a prevalence of 25 in 1,000 forraedlates intp = 0.025. A
related term isncidence; this is the proportion ofew cases in some specific time-period.
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incorrect title “The detection of defective members of ppulations” was
published in 1943 in thénnals of Mathematical Satistics. The procedure
of pooling has many applications other than blood testsexample, tests of
water, air, or soil quality.

Let me finish with a little treat for the theory buffs. Firstalf, the expected
value is commonly denoted hy (Greek letter “mu”). The general formula
for 1 is as follows. If the possible values are, x,, ..., and these occur with
probabilitiesp, po, ..., respectively, the expected value is defined as

P=21 XP1+ToXpr+---

where the summation goes on for as long as it is needed. Inatte af a
die roll, the summation stops after six terms, equalsk and allp, equal
1/6. For another example, recall the binomial distributiamfrpage??. This
counts the number of successesiimdependent trials where each time the
success probability is. The possible outcomes are the numbers 0, 1,...,
and the corresponding probabilities were given in the fdaman page??.
The expected number of successes is therefore

" n
=)> kx x pP x (1 —p)"*
o g::o <k> p" x (1-p)

which is hot completely trivial to compute. However, it issgdo guess what
it is. For example, if you toss a coin 100 times, what is theeetgd number
of heads? Fifty. If you roll a die 600 times, what is the expdchumber
of 6s? One hundred. In both cases, the expected number isdatagp of
the number of trials and the success probability, and thisuis in general.
Thus, the binomial distribution with parametetsandp has expected value
n X p (which as usual for expected values is not necessarily alpesstual
outcome). If you are familiar with Newton’s binomial theorgyou might be
able to show that the expression foabove indeed equals x p.

GOOD THINGS COME TO THOSE WHO WAIT

There are expected values where the summation in the forfrartathe pre-
vious section goes on forever. This does not mean that istéever to
compute them, only that we can get an infinite sum if there ishwous limit

on the number of outcomes. For example, if you toss a coinateply and
count how many tosses it takes you to get heads for the firet tims number
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can theoretically be any positive integer. Although it ighty unlikely that
you have to wait until the 643rd toss, you cannot rule it oliefE is thus an
infinite number of outcomes. | have already pointed out thababilists do
not fear the infinite, and our notation for the expected valgecase like this is

o0
Mzzl’k X Dk
k=1

wherecc is the infinity symbol, indicating that the sum never endss dine of

the little intricacies of higher mathematics that you cad ad infinite number

of terms and still end up with a finite number. The probalgtith, must of
course eventually become very, very small. The probaliititst you get your

first head in the 643rd toss is, for examgle/2)54%, which starts with 193 zeros
after the decimal point. In general, the probability that get the first head in
thekth toss ig1/2)*, and the expected number of tosses until you get heads is

i kx (1/2)F = 1% (1/2) + 2 x (1/2)2 +3 x (1/2)% + - -
k=1

and, believe it or not, this messy expression equals 2. TEhiatuitively
appealing though. As heads show up on average half the tieeappear on
average every other toss and your expected wait ought to dbé¢osses. By
changing the success probability fromi2lto 1/6, an even messier sum can
be shown to equal six; thus, the expected wait until you rélivath a die is
six rolls. And yet another change, tg38, reveals that each roulette number
is expected to show up once every 38 spins. In general, if yewaiting
for something that occurs with probabilipy your expected wait is /. One
of the rewards of studying probability is that mathematied antuition often
agree in this way. Another reward is of course that math ahdgtion do
oftennot agree, at least not immediately, thus yielding wonderfsillyprising
results. As you have already learned, probability cernyairals a complex and
contradictory charm.

There is another way to compute the expected wait until tseHigads, or
6, or roulette win, a way that avoids the infinite sum. RecaWhve, starting
on page??, computed winning probabilities in some racket sport peoid
by considering a few different cases, one of which led bacthéostarting
point, thus giving an equation for the unknown probabilltye can use such
arecursive method here too. Suppose that you wait for something thairecc
with probability p and lety, denote the expected wait. In the first trial, you
either get your event of interest or you do not. If you do, thetwas one
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trial. If you do not, you have spent one trial and start ovehwain additional
expected wait of: trials, yielding a total of 1+ 1, expected trials. As the first
case has probability and the second — p, you get the following equation
for pu:

p=px1+(1-p)x(1+p)
=1l+p—pxp

which simplifies further to the equation &€ 1 — p x u that has solution
w = 1/p, just like we wanted.

Let us look at a variant of the problem of waiting for somethia happen.
In the Sainfeld episode “The Doll,” Jerry is very happy to find a dinosaur in a
cereal box (right after Elaine has told him he is juvenilegt Us now say that
there are ten different plastic toys to be found in that typeeseal box. In
order to get all of them, what is the expected number of boaay dnust buy?
This is difficult to solve directly by using the definition ofgected value. In
order to do this, you would have to compute the probabilitgt ih requires
k boxes for the possible values kf and as there is no upper limit on these
values, this presents a tricky problem. Just try to comphaeptobability that
Jerry must buy 376 or 12,971 boxes.

We will do something smarter. First of all, one box is bougid aontains a
dinosaur. What is the expected number of boxes Jerry mushhkarger to get
a different toy? As the probability to get a different toy i&19, he can expect
to buy 10/9 boxes, in analogy with what | said above wijth= 9/10. Once
he has gotten two different toys, he starts waiting for offferdint from these,
and as there are now eight remaining toys, the probabilityetosomething
different is 10 and the expected number of boxes ig80Next, he can
expect to buy another J@ boxes, then 10, and so on until he finally can
expect to buy 102 = 5 boxes to get the second-to-last toy and116- 10
boxes to get the final toy. Finally, in order to get the expactember of boxes
Jerry must buy to get all the toys, we use the additivity priypef expected
values and conclude that he can expect to buy

1+10/9 + 10/8 + - --10/2 + 10/1 ~ 29

boxes. Note that one third of these are bought in order totgetéry last
toy, every parent’s nightmare. The expression above carewsatten in a
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mathematically more attractive way as

10 1 1 1 1 1

X ( +§+§+"'+§+l—0)

where the expression in parenthesis consists of the firserb@stof thehar-
monic series. It is a well-known mathematical result that as more and more
terms are added, the harmonic series summed uptéoms, H,,, gets close
to the natural logarithm of, denotedog n (or sometimesn n). The natural
logarithm of a numbet: is what the numbee (= 2.71828..., remember the
discussion on page?) must be raised to in order to get Thus, ife¥ = =,
theny is the natural logarithm af: y = logz.2 Asn increases, the differ-
enceH,, — logn approaches a number that is knowrEager’s constant and

is approximately equal to 0.58We can now establish a nice general formula
for the expected number of cereal boxes if thereradifferent toys:

expected number of boxes n x (logn + 0.58)

which for n = 10 gives 28.8, approximately 29 just like above. nlfis
very large, we need to refine the constant 0.58; see footnoiéhi3 type of
problem did not start with Jerry Seinfeld; it is a classiclgability problem
usually called thecoupon collecting problem and has been generalized in a
multitude of ways.

A related type of problem is the so-calledcupancy problem. If Jerry
learns that he can expect to buy 29 boxes in order to get altay® and
decides to go on a cereal shopping spree and buy 29 boxesegttmve many

2A more familiar logarithm is the base-10 logarithm wheris replaced by 10. For example,
the base-10 logarithm of 100 is 2 because this is what 10 neustibed to in order to get 100:
107 = 100. In a similar way, you can consider the logarithm in angeband, for example,
conclude that the base-4 logarithm of 64 is 3 becadse 44. The ancient Babylonians liked
the base 60 and we still use this to keep track of time in seandhutes, and hours. In our
everyday math, we use base 10, computer scientists likeabesk? (binary system) and 16
(hexadecimal system), but to mathematicians only the b&sworthy of consideration.
3Leonhard Euler, a Swiss mathematician who lived betweer? &l 1783, was one of the
greatest mathematicians ever. He was extremely prolificanttibuted to almost every branch
of mathematics. His collected works fill over 70 volumes, aigdname has been given to so
many mathematical results that when you refer to “Euler&drem” you have to specify
which Euler’s theorem that you are talking about. The constanttimead here has an infinite
decimal expansion starting with 0.5772156..., followirm discernible pattern, and it is a
famous unsolved problem whether itritional (can be written as a fraction of two integers)
orirrational.



GOOD THINGS COME TO THOSE WHO WAIT 23

differenttoys can he expectto get? Note thatiigsten. Of course he could be
really unlucky and get dinosaurs in all of them, which ha$ptulity (1/10)2°.
Multiply this probability by 10 and get the probability thanly one type of
toy (not necessarily a dinosaur) is represented. It is abssiple to have 2, 3,
..., 9, or 10 different toys represented in the 29 boxes. Xpeaed number of
toys must be somewhere between 1 and 10, but it is tricky tgcoedirectly.
Again, additivity comes to our rescue and in this case in Byrekever way.

Open all of the boxes, and first look for dinosaurs. If you fimg,acount
“one” and otherwise “zero” (note that you count “one” if yomdiat least
one dinosaur; you doot count thenumber of dinosaurs). Next, look for
another type of toy, say, a SAAB 900 (a car model featuredvers¢Seinfeld
episodes). If you find any, count “one” and otherwise “zerigep looking
for other types of toys, each time counting “one” if you fincaitd “zero”
otherwise. When you have done this ten times, you have tes ame zeros,
and if you add them, you get the number of different toys thatrepresented
(if your sum equals ten, they are all there). Thus, to get te fiumber, you
added ten numbers and by additivity of expected values, tithgeexpected
final number, you add ten expected values, each such expediige being
computed from something that can be either one or zero. Atde that
all these individual expected values are equal because ih&o difference
between the toys in regard to how likely they are to be in the Mghat then
is such an expected value?

In order to find it, we only need to figure out the probabilit@s“one”
and “zero.” If the probability of 1 i, the probability of 0 is - p and the
expected value is

Ox(1-p)+1lxp=p
and by adding ten such expected values, we realize that feetd number
of different toys is 10< p. To findp, note that we count “one” if there is at least
one dinosaur. The ever useful Trick Number One tells us ti@ptobability
of this is one minus the probability of no dinosaurs, and we ge

P(at least one dinosape= 1 — (9/10)%

and finally
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expected number of different toys 10 x (1 — (9/10)%°) ~ 9.5

so the juvenile Jerry is quite likely to get all his toys.

Let us summarize the coupon collecting problem and the aoupprob-
lem in a general setting. There atedifferent types of objects and you are
attempting to acquire them one by one. The expected humlienfipts until
you get all of then objects is

n x Z(l/k:) ~n X (logn + 0.58
k=1
and if you try N times, the expected number of different objects that yolisget

N
n X <1 - (n — l) )
n
where you can notice that this number is very close tb NV is large, as you
would expect.

The zeros and ones that you summed above are qallischtors because
they indicate whether a certain type of toy is present in theeb. Resorting to
indicators is a very useful technique to compute expectkdgegaanother ex-
ample being thenatches that we discussed on pa@e. For a quick reminder,
if you write down the integers 1, 2, .n,in random order, the probability that
there are no matches (no numbers left in their original pwsjtis approxi-
mately 0.37 regardless af It is also possible to compute the probability of
one match, two matches, and so on, and from this we could centipel ex-
pected number of matches. However, to find the expected nushlreatches,
it is easier to use indicators. Simply go through the segei@mzl count one
whenever there is a match and zero otherwise. Add the zerberaes to get
the number of matches. To get the expected number of matekeam)ly need
to figure out the probability of a match in a particular pasitiand multiply
this byn, just like with the toys in cereal boxes above. Thisis eaggus on a
particular position. As the numbers are rearranged at nandoe probability
that this position regains its original number is simpjnland the expected
number of matches is thereforex 1/n = 1. Regardless of how many men
leave their hats at the party, when hats are randomly refiuroee man is
expected to get his own hat back.
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EXPECT THE UNEXPECTED

In the previous chapters we have seen many examples whdraljlity cal-
culations lead to results that are surprising or countettie. This is the case
for expected values as well, and we will look at several eXamFirst, some
random geometry.

Suppose that you create a random square by rolling a die éordiete its
sidelength. You then also compute the area, which is thersqidhe side-
length. The possible sidelengths are thus 1, 2,..., 6; tlssilple areas are
1, 4,..., 36; and each sidelength S corresponds to preciselyarea A ac-
cording to the equation A= S?. Plain and simple. Let us now compute the
expected sidelength and area. The expected sidelengtisyis wa already
know that this is 3.5. For the expected area, we can thenadiarvalue and
get 3.5 = 12.25. Or can we? Better be careful and do the formal calounlat
As each sidelength has probability6land corresponds to exactly one area,
each area also has probability6land we get the expected area

1x1/64+4x1/6+4---4+36x1/6~15.2

which is not at all 12.25. Apparently we cannot just squae ékpected
sidelength to get the expected area. This becomes cleaser tifiink about

long-term averages. For example, occurrences of sidéisrigare in the long
run compensated for by sidelengths 6 and they average 3.Wwevén, when

you compute the corresponding areas, sidelength 1 givadared sidelength
6 gives area 36; these areas average 18.5, which is not theesgfu3.5. In

the same way, sidelengths 2 and 5 average 3.5, but the condisg areas 4
and 25 average 14.5. When all areas are averaged, in thelontihe average
will settle around 15.2. Notice that this numbethigher than the square of
the expected sidelength. This is because areas grow fasieisidelengths;
doubling the sidelength quadruples the area. Sowhen ydbhatyhe average
square has sidelength 3.5 and area 15.2,” it may sound abstiaf course

you will never actually see the “average square.”

Here is a simple game. You and a friend are asked to take outyallets
and count your cash. The only rule of the game is that whomieagmore
must give it to the other (and if you have exactly the same antyaothing
happens). Would you agree to play this game? You might artjuenow
how much money | have. If my opponent has less, | lose whatd had if he
has more, | win more than what | have. There is no specific retsbelieve
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that he is poorer or wealthier than | am, so this seems likeca gizal. In
fact, since | have just learned about expected values, létynb@ compute my
expected gain. My: dollars can lead to either a lossofdollars or a gain of
y dollars, wherey > x and since a gain and a loss each have probabiligy 1
my expected gain is

(—2)x1/24+yx1/2=(y—x)/2

which is always a positive amount.”

The math formulalooks impressive, and you no longer heslitat conclude
that the game is in your favor, and you accept to play. Howevken you
see the smug look on your opponent’s face, you suddenlyzeetiiat he has
gone through similar calculations and come to the conafutiat the game
is in hisfavor, so he is also eager to play. This makes you confused. dda
the game be favorable twth of you?

The paradox stems from your implicit assumption that you eqeally
likely to win or lose, regardless of the amount in your walléttat is where
the probability ¥2 comes from). Clearly this is not true. For example, if you
have no money at all, you are almost certain to win unless gpponent is
also broke. At least you cannot lose anything. If you haveesdoat very
little money, you are quite likely to win, but if you have a taftcash, chances
are that your opponent has less and you lose. Rememberrffeithis not
the same as “50-50.”

Let us look at a simple example. Suppose that you and yourrappo
simply flip a coin each to decide how much cash you have. Heassms
you have $1, tails that you have $2. If you and your opponeptlié same,
nothing happens. If you flip heads and he flips tails, you winifigou flip
tails and he flips heads, you lose $1. As these two scenagajaally likely,
your expected gain is $0 and the game is fair.

OK, that was easy. Let us make it a little more complicated suppose
instead that you and your opponent choose your cash amoyatch rolling
a die. What is your expected gain? First, we can ignore all 8=cond, there
is a certain inherent symmetry in that, for example, the aute(3,5) (your
amount first) has the same probability as the outc¢®®). In the first case
you win $2; in the second, you lose $2. In this fashion, eadhigaanceled
by an equally probable loss of the same size, and as you suralbpessible
outcomes, you end up with $0 and the game is again fair.
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Now, people don’t go around and toss coins or roll dice todiebiow much
cash they have. But these were only examples to illustratesté can describe
the amount of money in a wallet at some arbitrary time as gdedrby some
random mechanism. There is an amount of uncertainty in ntsrde sizes
of cash withdrawals and cash payments, and in the end, iaErable to
assume that there is a range of possible cash amounts to whichn ascribe
probabilities. It is fairly easy to show (and even easier étidve) that the
expected gain for each player is $0, regardless of what #nge and these
probabilities are, as long as they are the same for both daye

One of the first to describe the wallet paradox was Belgiarhamaatician
Maurice Kraitchik in his 1942 booklathematical Recreations, but with neck-
ties instead of cash. | found it in Martin Gardner’s 1982 bédia! Gotcha,
a collection of various mathematical puzzles. Mr. Gardresdnot seem to
have fully grasped the problem though. In his own words, “\Wave been
unable to find a way to make this clear in any simple manner”@oidts out
that Kraitchik himself “is no help.” But Mr. Gardner also rarks that the
paradox perhaps arises because each player “wrongly assusnehances of
winning or losing are equal,” and as | explained above, thigrecisely the
resolution to the paradox. As | mentioned in Chapter 2, Mrd@ar pursued
a lifelong devotion to educating the general public in mathtcs, and con-
sidering this noble task, let us forgive him his somewhaeaisive treatment
of the wallet paradox.

The wallet paradox was puzzling at first, but | think we marbtgeeventu-
ally set it straight. The next paradox is similarly mindbbigg and not so easy
to resolve. You are presented two envelopes and are toldbtietontains
twice as much money as the other. You choose an envelopedaimampen
it, and note that it contains $100. You are now asked if youtvarkeep
the money or switch and take what is in the other envelopest,Rivere does
not seem to be anything to gain from switching, but then yaut $hinking.
The other envelope contains $50 or $200, and since you chasemly, it is
equally likely to be either. Thus, by switching you eitheirg&100 or lose
$50, and your expected gain is

“You may have noticed that mathematicians are very fond oflilmalis majestatis, a manner
of expression traditionally reserved for royalty. Mark Tiwaroposed to extend the privilege to
people with tapeworms; mathematicians seem to have addets#ives to the list. Personally
| believe this is because mathematicians are a very friegwliycommunal minded bunch who
often feel that manipulating math formulas is a lonely bass
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(—50) x 1/2+ 100 1/2 = 25

so it seems to be to your advantage to switch.

OK, so switch then, what is the problem? Well, there is n@tspecial
with the amount $100, and the calculations can be repeateshjoamount A
that you find in the first envelope; in which case, the otheetape contains
A/2 or 2<A and your expected gain is

(—A)/2x1/2+2x A x1/2=A/4

dollars. Thus, it is always to your advantage to switch, sg e¥ven bother
opening the first envelope? Just take it and immediatelycbwi the other.
But why even bother taking the first? Just take the other epeetlirectly!

But wait, then that envelope has become the first so showtdo’then switch
to the other, formerly first, envelope? But then you shouke tidnat envelope
directly instead. But then...

Now that was really confusing. Something must be wrong buat®H_et
us try to do the experiment and see what happens. We get tvetopes, put
two amounts of money in them, and start choosing, openingj satching.
What will happen? Naturally, you win as often as you lose i ltimg run,
and the amount you win or lose is always the same. Therewarenvelopes
andtwo amounts of money, but above we hhdee possible amounts floating
around: A/2, A, and 2<A. Even though you may observe A dollars in your
envelope and have no reason to believe more in either of toeai® A/2 and
2xA in the other, it does not seem sensible to translate thisprababilities
the way we did above. Once again, “either/or” is not necdgsthie same as
“50-50.” In this case, itis actually either “0—-100" or “10D*you just do not
know which.

A better description is that you are presented two enveltpescontain A
and 2<A, respectively, for some amount A. If you choose at randopgno
and switch, you are equally as likely to gain $A as you are tose $A. The
world makes sense again, and the envelope problem is nonfumae.

SIZE MATTERS (AND LENGTH, AND AGE)

Consider a randomly sampled family with children. On averagually as
many boys are born as girls; therefore, such a family hasyerage, equally
as many sons as daughters. But this must mean that boys téasi¢anore
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sisters than brothers. For example, in a family with foutdren, the average
composition is two sons and two daughters, and in such amgedamily,
each boy has two sisters but only one brother. On the othet, lrente a boy
is born, the rest of the children should be born in the usuabB@roportions,
which indicates that boys tend to have equally as many bioted sisters.
What is correct?

The second claim is correct. Boys mot tend to have more sisters than
brothers. This may seem paradoxical at first, though. If yaa@e a boy at
random and he has on average the same number of brotherseas, sisce
you add him to the mix does this not indicate that there terimktoore boys
than girls in the family? Yes indeed, but there is a twist. rEhe a difference
between sampling &amily and sampling @oy. Indeed, when you sample a
boy, you are ruling out the families that have only girls, ajw selecting a
family that has at least one son, asuth a family does on average have more
sons than daughters. For a simple illustration, considgrfamilies with two
children so that the equally likely gender combinationselisby birth order
are GG, GB, BG, and BB. If a family is sampled at random, théoabdlity
that it has no sons is/4, the probability that it has one son ig2] and the
probability that it has two sons is/4. The expected number of sons in the
family is therefore

Ox1/4+1x1/2+2x1/4=1

but if aboy is sampled at random, the number of somsis family (himself

included) is equally likely to be one or two, the reason béira you are now
choosing from the four Bs, two of which are paired with a G dreldther two
with another B. The expected number of sons is therefore

1x1/2+2x1/2=15

When the sampled boy is removed, the remaining expected0s5sst means
that his sibling is equally likely to be male or female. Thihg average family
has exactly one son who still manages to have on average hedttzer (not
a half-brother, mind you). But just like “average squaretlieg “average
family” is not a precise concept unless we specify how thegdisng is done.
You may also think about it like this: Suppose that childiremf 1,000 families
are gathered at a meeting. There will then be roughly the sauimber of
boys and girls present. Suppose instead that 1hp@fare gathered and that
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each has brought all his siblings. In the entire group, talethen tend to
be more boys than girls present, but among the siblings aéefexted boys,
proportions are still 50-50. Boys do nottend to have motesshan brothers;
rather, they tend to belong to families that have more saas taughters.

If you did not get this right the first time, you are in good cang. Our
constant companion Sir Francis Galton noticed in his 18GskIbtereditary
Genius that British judges were all men and came from families tfzat bn
average five children. He erroneously concluded that thggsdherefore had
on average 2.5 sisters and 1.5 brothers. Thirty-five ye#es lee realized his
mistake and corrected it in an article with the intriguirtiptfAverage number
of kinsfolk in each degree” published in the jouriNgturein 1904 (following
an even more intriguingly entitled article, “The foresgmf Central Africa”
by zoologist Philip L. Sclater).

When we sample a boy or a British judge rather than a familig ith
an example ofize-biased sampling. Let us take a closer look at the two-
children family. If a family is sampled at random and the nembf boys
counted, this number can be 0, 1, or 2, and the correspondutgabilities
are 1/4, 1/2, and ¥4. In the terminology from pag&?, the probability
distribution on the sef0, 1, 2} is (1/4, 1/2, 1/4). Now instead sample a
boy. The probability distribution on the same set is theteiad(0, 1/2, 1/2),
and the interesting thing is that these new probabilities loa obtained by
multiplying each of the first three probabilities by its asponding outcome:
0=0x1/41/2 =1x1/2,and Y2 = 2 x 1/4. In other words, the
probabilities changed proportional to size: 0 boys becartimés as likely,
1 boy as likely as before, and 2 boys twice as likely. The negbability
distribution is therefore called size-biased distribution.

For another example, roll a die. The set of possible outcam#®en the
set{1, 2, 3, 4, 5,  where each outcome has probability61 Rather than
rolling the die, you can think of this as choosing a face ofdleeat random.
Now instead choose a face of the die by first choosisgofat random, and
then choosing the face that this spot is on. As there af@t---- + 6 =21
spots, the probability to get the face showing 121, the probability to get
the face showing 2 is/21,..., and the probability to get the face showing 6
is 6/21. The probability distribution on the same $é&t 2, 3, 4, 5, § is now
(1/21,2/21,...,6/21) instead of the distributior§1/6,1/6, ...,1/6) we get
whenwe choose aface atrandom. Ifwe follow the ideain tha@pus example
with the two-children family and multiply each outcome withcorresponding
probability in the old distribution, we gé1 x1/6,2x 1/6, ..., 6 x 1/6), thatis,
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(1/6,2/6,...,6/6). This set of numbers is not a proper probability distribatio
because the sum of the numbers is not equal to one. Howesachinumberis
multiplied by 6/21, we get precisely the new distribution when a spot is amose
at random. Again, the probabilities in the new distributitave changed by
a factor proportional to size. The new size-biased prolighwf % is the old
probability 1/6 multiplied by 6x k/21.

There is more to be said. As 28 = 3.5, which is the expected value of a
die roll, the size-biased probability is in fact the old pabiity times the size
of the outcome divided by the expected valugé k k/3.5. Let us look at
this more formally. Denote the old probability bfby p;., the expected value
by 1, and the size-biased probability py. We then have the relation

Pr =k X pp/p

for k = 1,2,...,6. In our particular case, thg, are all equal to 16 and
u = 3.5, but the relation we stated between heand thep is true for
any probability distribution on any set. The size-biasedritution is the old
distribution with each probability multiplied b/ .

For another example of size-biased sampling, suppose thatlyoose a
U.S. state by randomly sampling and recording the state)@f (hS. Senator
and (b) a member of the U.S. House of Representatives. Tharg@uivalent
to choosing a state at random, whereas (b) is size-biaseflisgnbecause
larger states have more House representatives and are tradikely to be
chosen. If you want all states to be equally likely, choosinmember of
the House is incorrect, but if you want to give more weight tarenpopulous
states, itis correct. In general, size-biased samplingleaomething you do
not wish to do and that happens by mistake, but it may alsodi@galy what
you want to do. There are many real-life situations whereestype of size-
bias becomes an issue. When an individual is chosen at rafud@m opinion
poll, she is likely to come from a family that is larger thareeage, live in a
city that is larger than average, go to a school that is |afugem average, work
for a company that is larger than average, and so on, all sktheing factors
that may have an impact on her opinions. When an ichthydlogishes fish,
this may be done by detecting an entire school and largeroéelaoe easier
to detect. The same situation arises for any kind of animel #ppears in
clusters, be it flocks of birds, armies of frogs, or smacksetiyfish. When a
forest is inspected from the air for a tree disease, largahgs of sick trees
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are easier to detect. Larger tumors are easier to detectaanaos X ray. And
so on and so forth; size definitely matters.

Now let our randomly chosen family take a trip to Yellowstddational
Park where the most visited attraction is &l Faithful geyser, famed for
its regular eruptions, which occur about every 90 minutetieWour friends
arrive, they would thus expect to wait 45 minutes for an @aipt As they
wait, they start talking to a man who has visited many timestaas carefully
recorded his waiting times, which average more than 45 ragutle tells our
family that this indicates that the geyser is slowing dowut, data from the
park rangers do not give such indications. Other than thafaouily’'s new
friend may have had some bad luck, is there a logical explamat

Definitely. The crux is that the Old Faithful, contrary to heame and
reputation, does not erugtactly every 90 minutes, only on average. Indeed,
times between eruptions vary between 30 minutes and 2 hotr@ré® most
typically in the 60—100-minute range or so. If it did eruptetty every 90
minutes and you arrived at a random time, your expected wailacertainly
be 45 minutes. But now that intervals vary in length, you aréact more
likely to arrive in one of the longer intervals and thus youpected wait is
longer than 45 minutes. To simplify things, suppose thadriatls alternate
between one and two hours so that eruptions occur at noem,23 P.M,, 5
P.M, 6 P.M, and so on. The average interval length is then 90 minutesf bu
you arrive at random, you are twice as likely to arrive in adshinterval and
your expected wait is one hour; if you arrive in a 1-hour iaédryour expected
wait is half an hour. Thus, two thirds of the time you wait oe&ge an hour
and one third of the time, half an hour. Ag2x 1+ 1/3 x 1/2 =5/6, your
expected wait is 56 of an hour or 50 minutes, longer than half the average
interval time 45 minutes. See Figure 5.1 for an illustratdthis scenario. In
reality there is of course much more randomness than juiinrghback and
forth between one- and 2-hour intervals but you get the géipécture.

W AV VAR \V4 AV AV AVARAVALVA AV4 AV4 AV V. N V4
‘ 7\ 7\ 7\ ‘I\ 7\ ‘ 7\ 7\ 7\ I\‘ 7\ ‘ 7\ 7\ I\‘ 7\

Noon 2:00 3:00 5:00 6:00 8:00

Figure5.1 The Old Faithful erupting at alternating intervals of leimgione hour
and two hours and successive random arrivals. Note thag #ver more arrivals in
the 2-hour intervals, making the average waiting time foeauption more than 45
minutes.
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The situation described above is an example ofatiding time paradox, a
well-known phenomenon in probability. Another examplehsf tvaiting time
paradox is when you catch a bus by randomly arriving at a bys sEven
though the bus may run on average twice an hour, due to randoiation,
you are more likely to hit the longer intervals and must waitawerage more
than the 15 minutes’ waiting time you would have if they ramaly every
half-hour. However, bus arrivals are still fairly regularckthe difference is not
likely to be large. It is not until the case of the rare and edjictable events
we studied in Chapter 3 that the name “paradox” is really eduri.et us look
at earthquakes as an example. According to the U.S. Gealdgicvey, great
earthquakes (magnitude 8 and higher on the Richter scatel)y ot average
once a year worldwide. Considering the capricious natueadahquakes, let
us agree that they qualify as rare and unpredictable. Bstriigans that at
any given time, the expected waiting time until the next gesathquake is
one year, regardless of when the previous earthquake ect;Lso if a space
alien decides to pay a surprise visit to Earth, he can expestit one year
for the next earthquake. On the other hand, when he arrihesexpected
time since thdast earthquake is also one year (just think of time running
backward). One year since the last earthquake, one yedrthmthext, yet
one year between earthquakes and not two! Seems paradouicainember
that these are expected values, and our alien friend is gimilre likely
to arrive in an interval that is longer than usual. Very shotervals that
contribute to lowering the expected length are likely to hesed completely.

The waiting time paradox has a lot in common with size-biasadpling.
Consider, for example, the simplified Old Faithful examplighwntervals
between eruptions that are equally likely to be one hour ar bhours. A
randomly sampled interval is then equally likely to be oheitlength, and its
expected length is 90 minutes. However, when sioive at random, you can
think of this as sampling an interval where the 2-hour irtéistwice as likely
as the 1-hour interval. Thus, the initial probability dilstition (1/2, 1/2) on
the set{30,60 (minutes) has changed td/3, 2/3), where more weight is
given to the larger value. Note how the new probabilities @n@portional
to the old probabilities times the interval lengths. Thrg hew distribution
is size-biased or, more appropriately in this cadsagth-biased. This was
the simplified example but regardless of what the real thstion of inter-
eruption times are, when you arrive at random you choose aodhterval
with a probability proportional to its length.
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A similar type of bias shows up whéeiie expectancy is computed. In our
terminology, life expectancy is the expected lifespan ofalmorn individual.
In a human population, life expectancy is estimated by @ingrthe ages of
everybody who dies (usually in a year) and taking the averhgthe Seinfeld
episode “The Shower Head,” George Costanza tries to coeniig parents
to move to Florida by pointing out that life expectancy iniida is 81 and
in Queens where they live, 73. Does this mean that Frank atedlé&sould
expect to live eight years longer in Florida? Not quite. Oeason (other
than the orange juice) that Florida has a high life expegtasthat many
people move there from other states, most notably New Yoetha&se people
have already started their lives, and in most cases livead gart of it, they
cannot die at an age lower than that of their move. Thus, tlieprive”
Florida of deaths at a young age, and this increases thegevage at death.
This scenario is typical for any city, state, or nation thas lnet immigration,
another well-known (likewise orange cultivating) exampking Israel. At
the other end, states with net emigration have lower lifeeefgncies. To help
you understand, consider an extreme example and suppagetme born in
A-town die either at age 40 or at age 80. They live and work iton, and if
they survive age 40, they retire at 65 and then move to B-toherarthey live
the rest of their lives. Life expectancy in A-town is 40 andBktown 80, even
though the people are really the same. Introduce a morestiealariability
in lifespans and migration ages and you get a less drastisifmilar effect.

DEVIANT BEHAVIOR

Let us once again sit down at the roulette tabl®©ther than betting on a
single number, there are plenty of ways to bet on a whole gofufumbers.
On the roulette table, the numbers 1-36 are laid out in a 3 byritPwhere
the top row is 1-2-3, the second row 4-5-6, and so on. Alsdoh#hese
numbers are red and half are black. On top of this grid are tmebers 0
and 00, colored green (on American roulette tables; Eumpaales do not
have the double zero). To bet on a single number is calbchaght bet. You
can also, for example, place add bet, which does not mean that you are
betting in an unusual manner but that you win if any of the oddhbers 1,
3,..., 35 comes up. Likewise, you can bet on even or on redagkblYou can

%I am constantly whetting your appetite with little glimpsato the world of gambling. Be
patient. In Chapter 7, we will indulge shamelessly in alldsrof games, bets, and gambles.
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also dosplit bets, street bets, square bets, column bets, and yet some. This is
casino lingo, and all it means is that you can place your cbighat it marks
more than one number and you then win if any of your numbersecom
Needless to say, the amount you win is smaller the more nwsnjmer have
chosen and the payouts are carefully calculated so thatogi3 cents per
$1 regardless of how you play. For example, let us say thatwager your
dollar on an odd bet. The payout of such a bet is $1, and sirere tre 18
odd numbers between 1 and 36, the probability that you wirs§Bi38 and
with probability 20/38 you lose your wagered dollar. Your expected gain is
therefore

1x 18/38+ (—1) x 20/38 = —2/38~ —0.05

an expected loss of 5 cents per $1, just like if you place ag$trdet. With
the odd bet, your chances of winning are significantly highan with the
straight bet, but when you win, the payout is much smalleatler words, the
variability of your fortune is much greater when you placaigtht bets. This
fact is not reflected in the expected value, so it would be todeave a way
to measure variability, in other words, to measure how mbaetattual value
tends to differ from thexpected value. There are different ways to do this, but
probabilists and statisticians have come to the consehatithe best measure
of variability is something called theariance. This is defined as the expected
value of the square of the difference between the actuaé\aaid the expected
value® That was a mouthful. Let me illustrate it with the rouletteample

of odd bets. The expected value of your gair-8.05 (dollars) and the two
possible actual values arel and 1. The differences from the expected value
are—1— (—0.05 = —0.95 and 1- (—0.05 = 1.05 respectively. Square
these two values to gét-0.95% = 0.9025 and 1.05= 1.1025. Finally,
we need to compute the expected value of these squarecedifies. As the
first of them corresponds to a loss, it has probability2®and the second,
corresponding to a win, has probability 43B. This gives the variance as the

6Squares are computed because we want to have only posiliyesva\nother way to achieve
this would be to computabsolute values of the differences between actual and expected
values (i.e., the differences without signs). It turns dattsquares have nicer mathematical
properties than absolute values; for example, with sonteéctens, variances are additive just
like expected values, something that would not be true if ae tsed absolute values instead
of squares.
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expected value of these two squares:
0.9025x 20/38+ 1.1025x 18/38~ 1

anumber thatin itself does not mean much, but let us compigtnettve straight
bet. Here, the possible actual values attand 35 and a similar calculation
to the one above gives a variance that is approximately 38.nfinch larger
value of the variance of the gain of a straight bet than thabaidd bet reflects
the larger variability in your fortune with the straight bét the long run, you
lose just as much with either type of bet, but the paths tolaok different.

The variance thus supplements the expected value in a usaful Let
us look at another example, the inexhaustible conversatipic of weather.
Two U.S. cities that for different reasons caught my attemin early 2006
were Arcata and Detroit. In January 2006, | visited Arcatatima coast of
northern California. Browsing through some weather diatis| calculated
that the daily high temperatures have an annual averageoot &9 degrees
Fahrenheit. A few weeks later, Super Bowl XL was played inrBigtwhich
has the same annual average daily high of about 59 degreems€la day
of the year at random to visit Arcata or Detroit, and the expedaily high
is the same, 59 degrees. However, this does not mean mudht imtilso
supplemented with the variance, which for Arcata is 12 andfetroit 363
(and | challenge you to find a place with a lower temperatureamae than
Arcata). The much larger variance of Detroit reflects thgeawvariability in
temperatures over the year. For example, the average dgfiyith Detroit in
January is 33 and in July, 85. The corresponding numbers rfcaitA are 55
and 63. In Detroit you will need to bring shorts or long johrepdnding on
the season; in Arcata, hone of these garments are of muctbusbr{ng an
umbrella in the winter).

I mentioned in passing above that there is no clear meanirigeovalue
of the variance. One problem is that it is computed from waltieat have
been squared, which means that the units of measurementalsvdeen
squared. What does it mean that the variance is 33 squa@siali 363
square degrees? Nothing, obviously, but there is an easyCixnpute the
square root of the variance. This number is called dfaadard deviation
and is more meaningful because the unit of measurementssmpes. In the
roulette example, the standard deviations for straightaattbets are $1 and
V33~ $5.7, respectively. In the weather example, the standandtiten for
Arcata is 3.5 degrees and for Detroit, 19 degrees.
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This feels a little better, but the standard deviation siiles not have the
crystal clear interpretation that the expected value h&erd are some rules
and results that can help, one of them due to another greatdtusathemati-
cian, Pafnuty Lvovich Chebyshev, who lived between 1821 8f# and is
famous for his contributions to probability, analysis, fnagcics, and, above
all, number theory. His result, known a€hebyshev's inequality, states that
in any experiment, the probability to get an outcome withistandard de-
viations of the expected value is at least-11/%?, for any value ofk. For
example, choosing = 2 informs us that regardless of what the experiment
is, the probability to get an outcome within two standardiaigons of the
expected value is at least 0.75. Stated differently, Chedays inequality tells
us that in a set of observations, at least 75% of the obsengfall within
two standard deviations of the average. In Arcata, we carabqt least 273
days with a daily high temperature between 52 and 66, and tiroDeave can
expect at least 273 days between 21 and 97 degrees. Andcwitt3, we
getl — 1/k* = 8/9 ~ 0.89; at least 89% of observations are within three
standard deviations of the expected value.

I would like to stress the “at least” part of Chebyshev’s in@iy. In reality
the probabilities and percentages are often significanglidr. For example,
in the roulette example with odd bett| observations are within two standard
deviations. Also note that if you chooke= 1, all Chebyshev tells you is that
at least 0% of the observations are within one standard tiewiaCertainly
true but not very helpful. Chebyshev’s inequality tendseéatude in this way
but that is only natural because it is always true, regasdiéshe particulars
of the experiment. Itis sort of like saying that every U.&tatis smaller than
572,000 square milesin area. This is needed to include AlasH is certainly
true if we only consider the continental United States, bant262,000 square
miles would be enough. And if we restrict ourselves to New|&nd, even
less is needed. Despite these shortcomings, Chebyshegjsatity is still
useful as we will learn in the next section.

Let me again pander to those of you who suffer from theoryiongs/and
give the formal definition of variance. Suppose that our expent can result
in the outcomesy, z», ..., and that these occur with probabilitips, p., ...,

"Chebyshev also holds the unofficial world record among nmttiigians for most spellings

of last name. | should really say transliterations rathantspellings because in his native
Cyrillic alphabet he iS1e6rimés and nothing else. In the Western world, he has appeared in
print in about a dozen different forms ranging from the mialist Spanish versio@ebysev to

the consonant-indulgence of the GernTanhebyscheff.
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the same setup as we had when we formally defined expectee @alflier.
Denote this expected value hy and remember that the variance involves
computing the squared differences between each possikhle gady, then
computing the expected value of these squared differeribesslating this
verbal description into mathematics gives the formal dediniof the variance,
commonly denoted by the symhet (square of the Greek letter “sigma”) as

0% = (z1— p)? X p1+ (w2 — p)? X p2 + -

where the summation stops eventually if there are a finitebmrrof outcomes
and goes on forever otherwise. Check for yourself that shjgécisely what
we did above in the roulette examples. Just for practiceideto the variance
for the roll of a die. The possible values are 1, 2,..., 6, egith probability
1/6, and the expected value is 3.5. The variance is therefore

(1-352x1/6+(2—352x1/6+-+ (6—352x1/6~ 2.9

which gives a standard deviation of 1.7. Let us compare thitstve standard
deviation of a die that has 1 on three sides and 6 on the renggiiniee. This
die gives 1 or 6, each with probability/2, so it also has an expected value
3.5. Its variance is

(1-352x1/2+ (6—3.52x1/2=6.25

which gives standard deviation 2.5. Thisis larger thantiedard deviation of
the ordinary die because this special die has outcomesahato be further
away from the expected value 3.5. Again, we have an exampérenthe
expected value does not tell the full story but is nicely sepented by the
standard deviation.

Recall that the standard deviation is the square root of dinearnce, and it
is therefore denoted by and we can state the formal version of Chebyshev’s
inequality. Before we do that, though, let me mention an irtgrdg concept
in probability. Before any experiment, the outcome is unkn@nd we can
denote it by.X, which means thak is unknown before the experiment and
gets a numerical value after. Such an unknown quantity wkakee is de-
termined by the randomness of some experiment is caltaddom variable.
This is a very important concept in probability that greatimplifies the no-
tation in many examples. If a die is rolled, instead of wgtthings like “the
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probability to get 5” and “the probability to get 6,” we canstidenote the
outcome of the die by and write RX = 5) and RX = 6), a mathemati-
cal and more convenient notation. Chebyshev’s inequaityow be stated as

Ppu—kxo<X<pu+kxo)>1-1/k
or, using absolute values,
PIX —p| <kxo)>1-1/k?

for any value ofk (which by the way does not have to be an integer; it could
be 1.5 or 4.26 or any other nonnegative humber). Make sutehbae last
two expressions are equivalent, and that they agree withatial description

of Chebyshev’s inequality that | gave earlier.

FINAL WORD

The concept of expected value that we have investigatedsrchapter can
be thought of as the ideal average in a random experiment. eXpected
value summarizes the experiment in a single number, but we $gen many
examples of how some care must be taken in the interpretafitims. The
expected value’s constant companion is the standard devidiat measures
the amount of variability in the experiment, and together tilvo, 1 and o,
provide a convenient summary of the random experiment. ¢ ladso at times
hinted that we can interpret the expected value as the lemy-dverage, and in
the next chapter, this particular interpretation will bertbughly investigated.
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