Probability, solutions to HW7

23. The pmf’s are given in the answer to problem 2.

27. Let \(x \) denote “not 6” and let \(X \) denote your gain. The possible outcome of \(X \) and the corresponding sequences of 3 dice are

- \(X = -1: xxx \), probability \(f(0) = \left(\frac{5}{6}\right)^3 = \frac{125}{216} \)
- \(X = 1, 6xx, x6x, xx6 \), probability \(f(1) = 3 \cdot \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} = \frac{75}{216} \)
- \(X = 2, 66x, 6x6, x66 \), probability \(f(2) = 3 \cdot \left(\frac{5}{6}\right) \cdot \left(\frac{1}{6}\right)^2 = \frac{15}{216} \)
- \(X = 3, 666 \), probability \(f(3) = \left(\frac{1}{6}\right)^3 = \frac{1}{216} \)

which gives expected gain

\[
E[X] = (-1) \cdot \frac{125}{216} + 1 \cdot \frac{75}{216} + 2 \cdot \frac{15}{216} + 3 \cdot \frac{1}{216} = -\frac{17}{216} \approx -0.079
\]

32. Let \(X \) be the breaking point and let \(L \) denote the length of the longest piece. Then \(X \sim \text{unif}[0, 1] \) and \(L = g(X) \) where the function \(g \) is given by

\[
g(x) = \begin{cases}
1 - x & \text{if } 0 < x \leq 1/2 \\
x & \text{if } x \geq 1/2
\end{cases}
\]

Since \(f_X(x) = 1 \), we get

\[
E[L] = E[g(X)] = \int_0^1 g(x)dx - \int_{1/2}^1 (1 - x)dx + \int_1^{1/2} xdx = \frac{3}{4}
\]

37. Note that \(E[Y] = \infty \) so we cannot define the variance of \(Y \).

40(b) \(c = 1/(\sqrt{3}(2n + 1)) \to 0 \) as \(n \to \infty \).

2. \(E[X] = (-1) \cdot \frac{35}{38} + 11 \cdot \frac{3}{38} = -2/38, E[X^2] = (-1)^2 \cdot \frac{35}{38} + 11^2 \cdot \frac{3}{38} = 398/38, \text{Var}[X] = 398/38 - (-2/38)^2 = 10.5 \)

3(a) Solve \((-1) \cdot 33/38 + a \cdot 5/38 = -2/38 \) for \(a \) to get the payout \(a = 6.2 \).

(b) \(-3/38 \approx -0.08 \), an expected loss of 8 cents per dollar.
4(a) \(E[X] = \int_0^1 xf(x)dx = \int_0^1 2x^2dx = 2/3 \)

\(\text{Var}[X] = E[X^2] - (E[X])^2 \) where \(E[X] = 2/3 \) and \(E[X^2] = \int_0^1 x^2f(x)dx = \int_0^1 2x^3dx = 1/2; \) thus \(\text{Var}[X] = 1/2 - (2/3)^2 = 1/18.\)

(b) \(E[4\pi X^3/3] = \int_0^1 \frac{4\pi}{3} x^3f(x)dx = \frac{4\pi}{3} \int_0^1 2x^4dx = \frac{8\pi}{15}.\)

5. \(E[V] = 2, \text{Var}[V] = 36/7 \) \((E[V] = \int_0^2 x^3 f_X(x)dx = (1/2) \int_0^2 x^3dx = 2, E[V^2] = \int_0^2 x^6 f_X(x)dx = 64/7)\)

6(a) \(E[X] = \int_0^1 xf(x)dx = \int_0^1 3x^3dx = 3/4, E[X^2] = \int_0^1 x^2 f(x)dx = \int_0^1 3x^4dx = 3/5, \text{Var}[X] = 3/5 - (3/4)^2 = 3/80.\)

(b) \(E[Y] = \int_0^1 \sqrt{x} f(x)dx = 6/7, E[Y^2] = \int_0^1 x f(x)dx = 3/4, \text{Var}[Y] = 3/4 - (6/7)^2 = 3/196.\)

7(a) \(1 = c \int_0^\pi \sin x dx = 2c \) which gives \(c = 1/2.\)

(b) \(F(x) = \int_0^x f(t)dt = \frac{1}{2} \int_0^x \sin x dx = \frac{1-\cos x}{2}, \quad 0 \leq x \leq \pi \)

(c) \(E[\csc X] = \frac{1}{2} \int_0^\pi \csc x \sin x dx = \frac{1}{2} \int_0^\pi dx = \frac{\pi}{2} \)