Probability Models, Homework 5, due May 2

- 1. Consider the Wright-Fisher model with 2N = 6 with 4 copies of A and 2 copies of a in generation 0.
- (a) Find the probability that A becomes fixed in the first generation.
- (b) Find the probability that a becomes fixed in the first generation.
- (c) If the population in (a) doubles between the 0th and first generation instead of stying constant, what are the average population size and the effective population size?
- **2.** The smallest possible (haploid) population size in the Wright-Fisher model is 2. Let n be any nonnegative integer and show that the harmonic mean of 2 and n is always less than 4.
- 3. Recall Problem 2 on HW 3 where we let the individuals 1, 2, ..., 2N have numbers of offspring $X_1, X_2, ... X_{2N}$ where $X_1 + X_2 + \cdots + X_{2N} = 2N$. Also recall that in the Wright-Fisher model, each X_k has a certain binomial distribution (and the X_k are not independent). Thus, random sampling with replacement corresponds to the X_k having this binomial distribution. More generally, we can let the X_k be any nonnegative integer-valued random variables with the same distribution as long as they are such that $X_1 + X_2 + \cdots + X_{2N} = 2N$ (in order to keep a constant population size and note that this also means that we must have $E[X_k] = 1$). We are no longer necessarily sampling with replacement; for example, we can put bounds on how many offspring an individual may have. As we have seen, in the Wright-Fisher model, the time T until the most recent common ancestor equals $E[T] \approx 4N$ (time unit: generations) if the sample k is reasonably large. In this more general model, it can be shown that

$$E[T] \approx \frac{4N}{\sigma^2}$$

where σ^2 is the limit of the variance in the offspring distribution as $N \to \infty$, $\sigma^2 = \lim_{N \to \infty} \text{Var}[X_k]$ (from a practical point of view, σ^2 is the approximate variance in the offspring distribution assuming N is large).

- (a) Find σ^2 in the Wright–Fisher model and show that the general formula for E[T] applies.
- (b) Suppose we choose N individuals randomly and give them 2 offspring each. The remaining individuals get no offspring. Find σ^2 and E[T]. Note: For a given individual k, you need to find the probability that it is included in the sample of N individuals. This is the probability that $X_k = 2$. To find the variance, use the formula $Var[X] = E[X^2] (E[X])^2$.
- (c) If σ^2 increases, E[T] decreases and vice versa. Give an intuitive argument why this makes sense.
- (d) If $\sigma^2 = 0$, we get $E[T] = \infty$. What situation does this describe? Think about what it means for a random variable to have variance equal to 0 and recall what we said about $E[X_k]$ above. Also, what can you say about T itself?