Probability Models, solutions to practice problems

1(a) \(G(s) = p_0 + p_1 s + p_2 s^2 = \frac{(1 + s + s^2)}{3}. \)

(b) \(G'(s) = \frac{(1 + 2s)}{3} \) and hence \(E[X] = G'(1) = 1. \)

(c) Since \(G_{X+Y}(s) = G_X(s)G_Y(s) \) we get

\[
G_{X+Y}(s) = \frac{(1 + s + s^2)^2}{9} = \frac{(1 + 2s + 3s^2 + 2s^3 + s^4)}{9}
\]

(d) \(P(X + Y = 0) = G_{X+Y}(0) = \frac{1}{9} \)

2(a) The pgf is \(G(s) = \frac{1}{3} + \frac{2}{3} s^2 \) and the equation \(s = G(s) \) has solutions 1 and \(1/2 \) and thus \(q = 1/2. \)

(b) If there are two ancestors, the extinction probability is \((1/2)^2 = 1/4\) (since two independent branching processes must both go extinct).

(c) If there are \(k \) ancestors, the extinction probability is \((1/2)^k\) (since \(k \) independent branching processes must all go extinct) which will be \(\leq 0.01 \) if \(k \geq 7. \)

3(a) The mean number of offspring is \(0 \cdot 0.8 + 2 \cdot 0.2 = 0.4 \) which is less than 1 and \(P(E) = 1. \)

(b) The mean number of offspring is \(0 \cdot (1 - p) + 1 \cdot p = p < 1 \) so \(P(E) = 1. \)

(c) The mean number of offspring is \(G'(1) \) and as \(G'(s) = e^{s-1} \), we have \(G'(1) = 1 \) and hence \(P(E) = 1. \)

(d) This pgf tells us that an individual has 1 offspring with probability 0.2 or 4 offspring with probability 0.8. As all individuals have offspring, the population cannot go extinct so \(P(E) = 0. \) Alternatively, solve the equation \(s = 0.2s + 0.8s^4 \) to get the solutions \(s = 0 \) and \(s = 1 \), the smaller of which is the extinction probability.