Probability Models, solutions to practice problems

1(a)
$$G(s) = p_0 + p_1 s + p_2 s^2 = (1 + s + s^2)/3.$$

(b)
$$G'(s) = (1+2s)/3$$
 and hence $E[X] = G'(1) = 1$.

(c) Since
$$G_{X+Y}(s) = G_X(s)G_Y(s)$$
 we get

$$G_{X+Y}(s) = (1+s+s^2)^2/9 = (1+2s+3s^2+2s^3+s^4)/9$$

(d)
$$P(X + Y = 0) = G_{X+Y}(0) = \frac{1}{9}$$

- **2(a)** The pgf is $G(s) = \frac{1}{3} + \frac{2}{3}s^2$ and the equation s = G(s) has solutions 1 and 1/2 and thus q = 1/2.
- (b) If there are two ancestors, the extinction probability is $(1/2)^2 = 1/4$ (since two independent branching processes must both go extinct).
- (c) If there are k ancestors, the extinction probability is $(1/2)^k$ (since k independent branching processes must all go extinct) which will be ≤ 0.01 if $k \geq 7$.
- **3(a)** The mean number of offspring is $0 \cdot 0.8 + 2 \cdot 0.2 = 0.4$ which is less than 1 and P(E) = 1.
- (b) The mean number of offspring is $0 \cdot (1-p) + 1 \cdot p = p < 1$ so P(E) = 1.
- (c) The mean number of offspring is G'(1) and as $G'(s) = e^{s-1}$, we have G'(1) = 1 and hence P(E) = 1.
- (d) This pgf tells us that an individual has 1 offspring with probability 0.2 or 4 offspring with probability 0.8. As all individuals have offspring, the population cannot go extinct so P(E) = 0. Alternatively, solve the equation $s = 0.2s + 0.8s^4$ to get the solutions s = 0 and s = 1, the smaller of which is the extinction probability.